

Debian Live Handbuch

Debian Live Project

 about-manual -
 Debian Live Handbuch

 [image: ^up^]

 [image: next>>]

 Debian Live Handbuch

 About

 3

 1. About this manual

 4

 The main goal of this manual is to serve as a single access point to all documentation related to the Debian Live project. It does not include end-user documentation for using a Debian Live system as far as things are live specific.

 5

 Some of the commands mentioned in the text must be executed with superuser privileges which can be obtained by becoming the root user via su or by using sudo. To distinguish between commands which may be executed by an unprivileged user and those requiring superuser privileges, commands are prepended by $ or # respectively. This symbol is not a part of the command.

 6
 [bookmark: 6]
 [bookmark: 1.1][bookmark: h1.1]1.1 For the impatient

 7

 While we believe that everything in this manual is important to at least some of our users, we realize it is a lot of material to cover and that you may wish to experience early success using the software before delving into the details. Therefore, we have provided three tutorials in the Examples section designed to teach you image building and customization basics. Read Using the examples first, followed by Tutorial 1: A standard image, Tutorial 2: A web browser utility and finally Tutorial 3: A personalized image. By the end of these tutorials, you will have a taste of what can be done with Debian Live. We encourage you to return to more in-depth study of the manual, perhaps next reading The basics, skimming or skipping Building a netboot image, and finishing by reading the Customization overview and the chapters that follow it. By this point, we hope you are thoroughly excited by what can be done with Debian Live and motivated to read the rest of the manual, cover-to-cover.

 8
 [bookmark: 8]
 [bookmark: h1.2][bookmark: terms]1.2 Terms

 9
 	
 Live system: An operating system that can boot without installation to a hard drive. Live systems do not alter local operating system(s) or file(s) already installed on the computer hard drive unless instructed to do so. Live systems are typically booted from media such as CDs, DVDs or USB sticks. Some may also boot over the network.

 10
 	
 Debian Live: The Debian sub-project which maintains the live-boot, live-build, live-config, and live-manual packages.

 11
 	
 Debian Live system: A live system that uses software from the Debian operating system that may be booted from CDs, DVDs, USB sticks, over the network (via netboot images), and over the Internet (via boot parameter fetch=URL).

 12
 	
 Host system: The environment used to create the live system.

 13
 	
 Target system: The environment used to run the live system.

 14
 	
 live-boot: A collection of scripts used to boot live systems. live-boot was formerly a part of live-initramfs.

 15
 	
 live-build: A collection of scripts used to build customized Debian Live systems. live-build was formerly known as live-helper, and even earlier known as live-package.

 16
 	
 live-config: A collection of scripts used to configure a live system during the boot process. live-config was formerly a part of live-initramfs.

 17
 	
 live-manual: This document is maintained in a package called live-manual.

 18
 	
 Debian Installer (d-i): The official installation system for the Debian distribution.

 19
 	
 Boot parameters: Parameters that can be entered at the bootloader prompt to influence the kernel or live-config.

 20
 	
 chroot: The chroot program, chroot(8), enables us to run different instances of the GNU/Linux environment on a single system simultaneously without rebooting.

 21
 	
 Binary image: A file containing the live system, such as binary.iso or binary.img.

 22
 	
 Target distribution: The distribution upon which your live system will be based. This can differ from the distribution of your host system.

 23
 	
 Squeeze/Wheezy/Sid (stable/testing/unstable): Debian codenames for releases. At the time of writing, Squeeze is the current stable release and Wheezy is the current testing release. Sid will always be a synonym for the unstable release. Throughout the manual, we tend to use codenames for the releases, as that is what is supported by the tools themselves.

 24

 The stable distribution contains the latest officially released distribution of Debian. The testing distribution is the staging area for the next stable release. A major advantage of using this distribution is that it has more recent versions of software relative to the stable release. The unstable distribution is where active development of Debian occurs. Generally, this distribution is run by developers and those who like to live on the edge.

 25
 [bookmark: 25]
 [bookmark: 1.3][bookmark: h1.3]1.3 Authors

 26

 A list of authors (in alphabetical order):

 27
 	
 Ben Armstrong

 28
 	
 Brendan Sleight

 29
 	
 Chris Lamb

 30
 	
 Daniel Baumann

 31
 	
 Franklin Piat

 32
 	
 Jonas Stein

 33
 	
 Kai Hendry

 34
 	
 Marco Amadori

 35
 	
 Mathieu Geli

 36
 	
 Matthias Kirschner

 37
 	
 Richard Nelson

 38
 	
 Trent W. Buck

 39
 [bookmark: 39]
 [bookmark: 1.4][bookmark: h1.4]1.4 Contributing to this document

 40

 This manual is intended as a community project and all proposals for improvements and contributions are extremely welcome. The preferred way to submit a contribution is to send it to the mailing list. Please see the section Contact for more information.

 41

 When submitting a contribution, please clearly identify its copyright holder and include the licensing statement. Note that to be accepted, the contribution must be licensed under the same license as the rest of the document, namely, GPL version 3 or later.

 42

 The sources for this manual are maintained using the Git version control system. You can check out the latest copy by executing:

 43

 $ git clone git://live.debian.net/git/live-manual.git

 44

 Prior to submission of your contribution, please preview your work. To preview the live-manual, ensure the packages needed for building are installed by executing:

 45

 # apt-get install make po4a sisu-complete libnokogiri-ruby

 46

 You may build the live-manual from the top level directory of your Git checkout by executing:

 47

 $ make build

 48

 Since it takes a while to build the manual in all supported languages, you may find it convenient when proofing to build for only one language, e.g. by executing:

 49

 $ make build LANGUAGES=en

 50
 [bookmark: 50]
 [bookmark: 1.4.1][bookmark: h1.4.1]1.4.1 Applying patches

 51

 Anyone can directly commit to the repository. However, we ask you to send bigger changes to the mailing list to discuss them first. To push to the repository, you must follow this procedure:

 52
 	
 Fetch the public commit key:

 53

 $ mkdir -p ~/.ssh/identity.d

 $ wget http://live.debian.net/other/keys/gitosis@live.debian.net \

-O ~/.ssh/identity.d/gitosis@live.debian.net

 $ wget http://live.debian.net/other/keys/gitosis@live.debian.net.pub \

-O ~/.ssh/identity.d/gitosis@live.debian.net.pub

 $ chmod 0600 ~/.ssh/identity.d/gitosis@live.debian.net*

 54
 	
 Add the following section to your openssh-client config:

 55

 $ cat >> ~/.ssh/config << EOF

 Host live.debian.net

Hostname live.debian.net

User gitosis

IdentityFile ~/.ssh/identity.d/gitosis@live.debian.net

 EOF

 56
 	
 Check out a clone of the manual through ssh:

 57

 $ git clone gitosis@live.debian.net:/live-manual.git

 58
 	
 After editing the files in manual/en/, please call the 'commit' target in the top level directory to sanitize the files and update the translation files:

 59

 $ make commit

 60
 	
 After sanitizing, commit the changes. Write commit messages that consist of full, useful sentences in English, starting with a capital letter and ending with a full stop. Usually, these will start with the form 'Fixing/Adding/Removing/Correcting/Translating', e.g.

 61

 $ git commit -a -m "Adding a section on applying patches."

 62
 	
 Push the commit to the server:

 63

 $ git push

 64
 [bookmark: 64]
 [bookmark: 1.4.2][bookmark: h1.4.2]1.4.2 Translation

 65

 To submit a translation for a new language, follow these three steps:

 66
 	
 Translate the about_manual.ssi.pot, about_project.ssi.pot and index.html.in.pot files to your language with your favourite editor (such as poedit). Send translated files to the mailing list. Once we have reviewed your submission, we will add the new language to the manual (providing the po files) and will enable it in the autobuild.

 67
 	
 Once the new language is added, you can randomly start translating all po files in manual/po/.

 68
 	
 Don't forget you need make commit to ensure the translated manuals are updated from the po files, before git commit -a and git push.

 [image: ^up^]

 [image: next>>]

 about-project -
 Debian Live Handbuch

 [image: <<previous]

 [image: ^up^]

 [image: next>>]

 Debian Live Handbuch

 About

 69

 2. ber das Debian Live Projekt

 70
 [bookmark: 70]
 [bookmark: 2.1][bookmark: h2.1]2.1 Motivation

 71
 [bookmark: 71]
 [bookmark: 2.1.1][bookmark: h2.1.1]2.1.1 What is wrong with current live systems

 72

 When Debian Live was initiated, there were already several Debian based live systems available and they are doing a great job. From the Debian perspective most of them have one or more of the following disadvantages:

 73
 	
 They are unofficial projects, developed outside of Debian.

 74
 	
 They mix different distributions, e.g. testing and unstable.

 75
 	
 They support i386 only.

 76
 	
 They modify the behaviour and/or appearance of packages by stripping them down to save space.

 77
 	
 They include unofficial packages.

 78
 	
 They ship custom kernels with additional patches that are not part of Debian.

 79
 	
 They are large and slow due to their sheer size and thus not suitable for rescue issues.

 80
 	
 They are not available in different flavours, e.g. CDs, DVDs, USB-stick and netboot images.

 81
 [bookmark: 81]
 [bookmark: 2.1.2][bookmark: h2.1.2]2.1.2 Why create our own live system?

 82

 Debian is the Universal Operating System: Debian has an official live system for showing around and to officially represent the true, one and only Debian system with the following main advantages:

 83
 	
 It would be an official Debian subproject.

 84
 	
 It reflects the (current) state of one distribution.

 85
 	
 It runs on as many architectures as possible.

 86
 	
 It consists of unchanged Debian packages only.

 87
 	
 It does not contain any unofficial packages.

 88
 	
 It uses an unaltered Debian kernel with no additional patches.

 89
 [bookmark: 89]
 [bookmark: 2.2][bookmark: h2.2]2.2 Philosophy

 90
 [bookmark: 90]
 [bookmark: 2.2.1][bookmark: h2.2.1]2.2.1 Only unchanged, official packages

 91

 We will only use official packages from the Debian repository in the "main" section. The non-free section is not part of Debian and therefore cannot be used at all for official live system images.

 92

 We will not change any packages. Whenever we need to change something, we will do that in coordination with its package maintainer in Debian.

 93

 As an exception, our own packages such as live-boot, live-build or live-config may temporarily be used from our own repository for development reasons (e.g. to create development snapshots). They will be uploaded to Debian on a regular basis.

 94
 [bookmark: 94]
 [bookmark: 2.2.2][bookmark: h2.2.2]2.2.2 No package configuration of the live system

 95

 In this phase we will not ship or install sample or alternative configurations. All packages are used in their default configuration as they are after a regular installation of Debian.

 96

 Whenever we need a different default configuration, we will do that in coordination with its package maintainer in Debian.

 97

 A system for configuring packages is provided using debconf in lb config (use --preseed FILE) allowing custom configured packages to be installed in your custom produced Debian Live images, but for official live images only default configuration will be used. For more information, please see Customization overview.

 98

 Exception: There are a few essential changes needed to bring a live system to life (e.g. configuring pam to allow empty passwords). These essential changes have to be kept as minimal as possible and should be merged within the Debian repository if possible.

 99
 [bookmark: 99]
 [bookmark: h2.3][bookmark: contact]2.3 Contact

 100
 	
 Mailing list: The primary contact for the project is the mailing list at ‹http://lists.debian.org/debian-live/›. You can email the list directly by addressing your mail to <debian-live@lists.debian.org.> The list archives are available at ‹http://lists.debian.org/debian-live/›.

 101
 	
 IRC: A number of users and developers are present in the #debian-live channel on irc.debian.org (OFTC). When asking a question on IRC, please be patient for an answer. If no answer is forthcoming, please email the mailing list.

 102
 	
 BTS : The Debian Bug Tracking System (BTS) contains details of bugs reported by users and developers. Each bug is given a number, and is kept on file until it is marked as having been dealt with. For more information, please see Reporting bugs.

 103
 	
 Wiki: The Debian Live wiki at ‹http://wiki.debian.org/DebianLive› is a place to gather information, discuss applied technologies, and document frameworks of Debian Live systems that go beyond the scope of this document.

 [image: <<previous]

 [image: ^up^]

 [image: next>>]

 installation -
 Debian Live Handbuch

 [image: <<previous]

 [image: ^up^]

 [image: next>>]

 Debian Live Handbuch

 User

 105

 3. Installation

 106
 [bookmark: 106]
 [bookmark: h3.1][bookmark: requirements]3.1 Requirements

 107

 Building Debian Live images has very few system requirements:

 108
 	
 Super user (root) access

 109
 	
 An up-to-date version of live-build

 110
 	
 A POSIX-compliant shell, such as bash or dash.

 111
 	
 debootstrap or cdebootstrap

 112
 	
 Linux 2.6.x

 113

 Note that using Debian or a Debian-derived distribution is not required - live-build will run on almost any distribution with the above requirements.

 114
 [bookmark: 114]
 [bookmark: h3.2][bookmark: installing-live-build]3.2 Installing live-build

 115

 You can install live-build in a number of different ways:

 116
 	
 From the Debian repository

 117
 	
 From source

 118
 	
 From snapshots

 119

 If you are using Debian, the recommended way is to install live-build via the Debian repository.

 120
 [bookmark: 120]
 [bookmark: 3.2.1][bookmark: h3.2.1]3.2.1 From the Debian repository

 121

 Simply install live-build like any other package:

 122

 # apt-get install live-build

 123

 or

 124

 # aptitude install live-build

 125
 [bookmark: 125]
 [bookmark: 3.2.2][bookmark: h3.2.2]3.2.2 From source

 126

 live-build is developed using the Git version control system. On Debian systems, this is provided by the git package. To check out the latest code, execute:

 127

 $ git clone git://live.debian.net/git/live-build.git

 128

 You can build and install your own Debian package by executing:

 129

 $ cd live-build

 $ dpkg-buildpackage -rfakeroot -b -uc -us

 $ cd ..

 130

 Now install whichever of the freshly built .deb files you were interested in, e.g.

 131

 # dpkg -i live-build_2.0.8-1_all.deb

 132

 You can also install live-build directly to your system by executing:

 133

 # make install

 134

 and uninstall it with:

 135

 # make uninstall

 136
 [bookmark: 136]
 [bookmark: 3.2.3][bookmark: h3.2.3]3.2.3 From 'snapshots'

 137

 If you do not wish to build or install live-build from source, you can use snapshots. These are built automatically from the latest version in Git and are available on ‹http://live.debian.net/debian/›.

 138
 [bookmark: 138]
 [bookmark: 3.3][bookmark: h3.3]3.3 live-boot and live-config

 139

 Note: You do not need to install live-boot or live-config on your system to create customized Debian Live systems. However, doing so will do no harm and is useful for reference purposes.

 140
 [bookmark: 140]
 [bookmark: 3.3.1][bookmark: h3.3.1]3.3.1 From the Debian repository

 141

 Both live-boot and live-config are available from the Debian repository as per Installing live-build.

 142
 [bookmark: 142]
 [bookmark: 3.3.2][bookmark: h3.3.2]3.3.2 From source

 143

 To use the latest source from git, you can follow the process below. Please ensure you are familiar with the terms mentioned in Terms.

 144
 	
 Checkout the live-boot and live-config source

 145

 $ git clone git://live.debian.net/git/live-boot.git

 $ git clone git://live.debian.net/git/live-config.git

 146

 Consult the live-boot and live-config man pages for details on customizing if that is your reason for building these packages from source.

 147
 	
 Build live-boot and live-config .deb files

 148

 You must build either on your target distribution or in a chroot containing your target platform: this means if your target is Squeeze then you should build against Squeeze.

 149

 Use a personal builder such as pbuilder or sbuild if you need to build live-boot for a target distribution that differs from your build system. For example, for Squeeze live images, build live-boot in a Squeeze chroot. If your target distribution happens to match your build system distribution, you may build directly on the build system using dpkg-buildpackage (provided by the dpkg-dev package):

 150

 $ cd live-boot

 $ dpkg-buildpackage -b -uc -us

 $ cd ../live-config

 $ dpkg-buildpackage -b -uc -us

 151
 	
 Use all generated .deb files

 152

 As live-boot and live-config are installed by live-build system, installing the packages in the host system is not sufficient: you should treat the generated .deb files like any other custom packages. Please see Customizing package installation for more information. You should pay particular attention to Additional repositories.

 153
 [bookmark: 153]
 [bookmark: 3.3.3][bookmark: h3.3.3]3.3.3 From 'snapshots'

 154

 You can let live-build automatically use the latest snapshots of live-boot and live-config by configuring a third-party repository in your live-build configuration directory. Assuming you have already created a configuration tree with lb config:

 155

 $ lb config --repository live.debian.net

 [image: <<previous]

 [image: ^up^]

 [image: next>>]

 the-basics -
 Debian Live Handbuch

 [image: <<previous]

 [image: ^up^]

 [image: next>>]

 Debian Live Handbuch

 User

 156

 4. The basics

 157

 This chapter contains a brief overview of the build process and instructions for using the three most commonly used image types. The most versatile image type, iso-hybrid, may be used on a virtual machine, optical media or USB portable storage device. In certain special cases, usb-hdd may be more suitable for USB devices. The chapter finishes with instructions for building and using a net type image, which is a bit more involved due to the setup required on the server. This is a slightly advanced topic for anyone who is not familiar already with netbooting, but is included here because once the setup is done, it is a very convenient way to test and deploy images for booting on the local network without the hassle of dealing with image media.

 158
 [bookmark: 158]
 [bookmark: 4.1][bookmark: h4.1]4.1 What is a live system?

 159

 A live system usually means an operating system booted on a computer from a removable medium, such as a CD-ROM or USB stick, or from a network, ready to use without any installation on the usual drive(s), with auto-configuration done at run time (see Terms).

 160

 With Debian Live, it's a Debian GNU/Linux operating system, built for one of the supported architectures (currently amd64, i386, powerpc and sparc). It is made from the following parts:

 161
 	
 Linux kernel image, usually named vmlinuz*

 162
 	
 Initial RAM disk image (initrd): a RAM disk set up for the Linux boot, containing modules possibly needed to mount the System image and some scripts to do it.

 163
 	
 System image: The operating system's filesystem image. Usually, a SquashFS compressed filesystem is used to minimize the Debian Live image size. Note that it is read-only. So, during boot the Debian Live system will use a RAM disk and 'union' mechanism to enable writing files within the running system. However, all modifications will be lost upon shutdown unless optional persistence is used (see Persistence).

 164
 	
 Bootloader: A small piece of code crafted to boot from the chosen media, possibly presenting a prompt or menu to allow selection of options/configuration. It loads the Linux kernel and its initrd to run with an associated system filesystem. Different solutions can be used, depending on the target media and format of the filesystem containing the previously mentioned components: isolinux to boot from a CD or DVD in ISO9660 format, syslinux for HDD or USB drive booting from a VFAT partition, extlinux for ext2/3/4 and btrfs partitions, pxelinux for PXE netboot, GRUB for ext2/3/4 partitions, etc.

 165

 You can use live-build to build the system image from your specifications, set up a Linux kernel, its initrd, and a bootloader to run them, all in one media-dependant format (ISO9660 image, disk image, etc.).

 166
 [bookmark: 166]
 [bookmark: 4.2][bookmark: h4.2]4.2 First steps: building an ISO image

 167

 The following sequence of live-build commands will create a basic ISO hybrid image containing just the Debian standard system without X.org. It is suitable for burning to CD or DVD media, and also to copy onto a USB stick (as per Copying USB/HDD image to a USB stick, specifying ".iso" extension where ".img" is indicated).

 168

 First, we run the lb config command which will create a "config/" hierarchy in the current directory for use by other commands:

 169

 $ lb config

 170

 By passing no parameters to lb config, we indicated that we wish to use the defaults (see The lb config command).

 171

 Now that we have a "config/" hierarchy, we may build the image with the lb build command:

 172

 # lb build

 173

 This process can take a while, depending on the speed of your network connection (see The lb build command).

 174
 [bookmark: 174]
 [bookmark: h4.2.1][bookmark: testing-iso-with-qemu]4.2.1 Testing an ISO image with Qemu

 175

 Testing an ISO is simple:

 176

 # apt-get install qemu

 $ qemu -cdrom binary.iso

 177
 [bookmark: 177]
 [bookmark: h4.2.2][bookmark: testing-iso-with-virtualbox]4.2.2 Testing an ISO image with virtualbox-ose

 178

 In order to test the ISO with virtualbox-ose:

 179

 # apt-get install virtualbox-ose virtualbox-ose-dkms

 $ virtualbox

 180

 Create a new virtual machine, change the storage settings to use binary.iso as the CD/DVD device, and start the machine.

 181

 Note: For live systems containing X.org that you want to test with virtualbox-ose, you may wish to include the VirtualBox X.org driver package, virtualbox-ose-guest-x11, in your live-build configuration. Otherwise, the resolution is limited to 800x600.

 182

 $ lb config --packages virtualbox-ose-guest-x11

 183
 [bookmark: 183]
 [bookmark: h4.2.3][bookmark: burning-iso-image]4.2.3 Burning an ISO image to a physical medium

 184

 Burning an ISO image is easy:

 185

 # apt-get install wodim

 $ wodim binary.iso

 186
 [bookmark: 186]
 [bookmark: 4.3][bookmark: h4.3]4.3 Building a USB/HDD image

 187

 The following sequence of commands will create a basic USB/HDD image containing just the Debian standard system without X.org. It is suitable for booting from USB sticks, USB hard drives, and various other portable storage devices. Normally, an ISO hybrid image can be used for this purpose instead, but if you have a BIOS which does not handle hybrid images properly, or want to use the remaining space on the media for a persistence partition, you need a USB/HDD image.

 188

 Note: if you created an ISO image with the previous example, you will need to clean up your working directory with the lb clean command (see The lb clean command):

 189

 # lb clean --binary

 190

 Run the lb config command with the parameters to configure the config/ hierarchy to create a USB/HDD image type:

 191

 $ lb config -b usb-hdd

 192

 Now build the image with the lb build command:

 193

 # lb build

 194
 [bookmark: 194]
 [bookmark: h4.3.1][bookmark: copying-usb-hdd-image]4.3.1 Copying USB/HDD image to a USB stick

 195

 The generated binary image contains a VFAT partition and the syslinux bootloader, ready to be directly written on a USB stick. Plug in a USB stick with a size larger than that of binary.img and type:

 196

 $ dd if=binary.img of=${USBSTICK}

 197

 where ${USBSTICK} is the device file of your key, like /dev/sdb (not a partition like /dev/sdb1!); you can find the right device name by looking in dmesg's output after plugging in the stick, for example, or better yet, ls -l /dev/disk/by-id.

 198

 This will definitely overwrite any previous contents on your stick!

 199

 Note: As discussed earlier, this same process can be used for iso-hybrid type images (suffixed -hybrid.iso), but not iso type images.

 200
 [bookmark: 200]
 [bookmark: h4.3.2][bookmark: testing-usb-hdd-with-qemu]4.3.2 Testing a USB/HDD image with Qemu

 201

 # apt-get install qemu

 $ qemu -hda binary.img

 202
 [bookmark: 202]
 [bookmark: 4.3.3][bookmark: h4.3.3]4.3.3 Using the space left on a USB stick

 203

 If you want to use the remaining free space after you have installed the binary.img, you can use a partitioning tool such as gparted or parted to create a new partition on the stick. The first partition will be used by the Debian Live system.

 204

 # gparted ${USBSTICK}

 205

 After the creation of the partition, you have to create a filesystem on it. One possible choice would be ext4.

 206

 # mkfs.ext4 ${USBSTICK}

 207

 If you want to use this data partition with Windows, use FAT32.

 208

 # mkfs.vfat -F 32

 209

 Remember: Every time you install a new binary.img on the stick, all data on the stick will be lost because the partition table is overwritten by the contents of the image.

 210
 [bookmark: 210]
 [bookmark: h4.4][bookmark: building-netboot-image]4.4 Building a netboot image

 211

 The following sequence of commands will create a basic netboot image containing the Debian standard system without X.org. It is suitable for booting over the network.

 212

 Note: if you performed any previous examples, you will need to clean up your working directory with the lb clean command:

 213

 # lb clean --binary

 214

 Run the lb config command as follows to configure your image for netbooting:

 215

 $ lb config -b net --net-root-path "/srv/debian-live" --net-root-server "192.168.0.1"

 216

 In contrast with the ISO and USB/HDD images, netbooting does not, itself, serve the filesystem image to the client, so the files must be served via NFS. The --net-root-path and --net-root-server options specify the location and server, respectively, of the NFS server where the filesytem image will be located at boot time. Make sure these are set to suitable values for your network and server.

 217

 Now build the image with the lb build command:

 218

 # lb build

 219

 In a network boot, the client runs a small piece of software which usually resides on the EPROM of the Ethernet card. This program sends a DHCP request to get an IP address and information about what to do next. Typically, the next step is getting a higher level bootloader via the TFTP protocol. That could be pxelinux, GRUB, or even boot directly to an operating system like Linux.

 220

 For example, if you unpack the generated binary-net.tar.gz archive in the /srv/debian-live directory, you'll find the filesystem image in live/filesystem.squashfs and the kernel, initrd and pxelinux bootloader in tftpboot/debian-live/i386.

 221

 We must now configure three services on the server to enable netboot: the DHCP server, the TFTP server and the NFS server.

 222
 [bookmark: 222]
 [bookmark: 4.4.1][bookmark: h4.4.1]4.4.1 DHCP server

 223

 We must configure our network's DHCP server to be sure to give an IP address to the netbooting client system, and to advertise the location of the PXE bootloader.

 224

 Here is an example for inspiration, written for the ISC DHCP server isc-dhcp-server in the /etc/dhcp/dhcpd.conf configuration file:

 225

 # /etc/dhcp/dhcpd.conf - configuration file for isc-dhcp-server

 ddns-update-style none;

 option domain-name "example.org";

 option domain-name-servers ns1.example.org, ns2.example.org;

 default-lease-time 600;

 max-lease-time 7200;

 log-facility local7;

 subnet 192.168.0.0 netmask 255.255.255.0 {

range 192.168.0.1 192.168.0.254;

next-server servername;

filename "pxelinux.0";

}

 226
 [bookmark: 226]
 [bookmark: 4.4.2][bookmark: h4.4.2]4.4.2 TFTP server

 227

 This serves the kernel and initial ramdisk to the system at run time.

 228

 You should install the tftpd-hpa package. It can serve all files contained inside a root directory, usually /srv/tftp. To let it serve files inside /srv/debian-live/tftpboot, run as root the following command:

 229

 # dpkg-reconfigure -plow tftpd-hpa

 230

 and fill in the new tftp server directory when being asked about it.

 231
 [bookmark: 231]
 [bookmark: 4.4.3][bookmark: h4.4.3]4.4.3 NFS server

 232

 Once the guest computer has downloaded and booted a Linux kernel and loaded its initrd, it will try to mount the Live filesystem image through a NFS server.

 233

 You need to install the nfs-kernel-server package.

 234

 Then, make the filesystem image available through NFS by adding a line like the following to /etc/exports:

 235

 /srv/debian-live *(ro,async,no_root_squash,no_subtree_check)

 236

 and tell the NFS server about this new export with the following command:

 237

 # exportfs -rv

 238

 Setting up these three services can be a little tricky. You might need some patience to get all of them working together. For more information, see the syslinux wiki at ‹http://syslinux.zytor.com/wiki/index.php/PXELINUX› or the Debian Installer Manual's TFTP Net Booting section at ‹http://d-i.alioth.debian.org/manual/en.i386/ch04s05.html›. They might help, as their processes are very similar.

 239
 [bookmark: 239]
 [bookmark: 4.4.4][bookmark: h4.4.4]4.4.4 Netboot testing HowTo

 240

 Netboot image creation is made easy with live-build magic, but testing the images on physical machines can be really time consuming.

 241

 To make our life easier, we can use virtualization. There are two solutions.

 242
 [bookmark: 242]
 [bookmark: 4.4.5][bookmark: h4.4.5]4.4.5 Qemu

 243
 	
 Install qemu, bridge-utils, sudo.

 244

 Edit /etc/qemu-ifup:

 245

 #!/bin/sh

 sudo -p "Password for $0:" /sbin/ifconfig $1 172.20.0.1

 echo "Executing /etc/qemu-ifup"

 echo "Bringing up $1 for bridged mode..."

 sudo /sbin/ifconfig $1 0.0.0.0 promisc up

 echo "Adding $1 to br0..."

 sudo /usr/sbin/brctl addif br0 $1

 sleep 2

 246

 Get, or build a grub-floppy-netboot (in the svn).

 247

 Launch qemu with "-net nic,vlan=0 -net tap,vlan=0,ifname=tun0"

 248
 [bookmark: 248]
 [bookmark: 4.4.6][bookmark: h4.4.6]4.4.6 VMWare Player

 249
 	
 Install VMWare Player ("free as in beer" edition)

 250
 	
 Create a PXETester directory, and create a text file called pxe.vwx inside

 251
 	
 Paste this text inside:

 252

 #!/usr/bin/vmware

 config.version = "8"

 virtualHW.version = "4"

 memsize = "512"

 MemAllowAutoScaleDown = "FALSE"

 ide0:0.present = "FALSE"

 ide1:0.present = "FALSE"

 floppy0.present = "FALSE"

 sound.present = "FALSE"

 tools.remindInstall = "FALSE"

 ethernet0.present = "TRUE"

 ethernet0.addressType = "generated"

 displayName = "Test Boot PXE"

 guestOS = "other"

 ethernet0.generatedAddress = "00:0c:29:8d:71:3b"

 uuid.location = "56 4d 83 72 5c c4 de 3f-ae 9e 07 91 1d 8d 71 3b"

 uuid.bios = "56 4d 83 72 5c c4 de 3f-ae 9e 07 91 1d 8d 71 3b"

 ethernet0.generatedAddressOffset = "0"

 253
 	
 You can play with this configuration file (e.g. change memory limit to 256)

 254
 	
 Double click on this file (or run VMWare player and select this file).

 255
 	
 When running just press space if that strange question comes up...

 [image: <<previous]

 [image: ^up^]

 [image: next>>]

 overview-of-tools -
 Debian Live Handbuch

 [image: <<previous]

 [image: ^up^]

 [image: next>>]

 Debian Live Handbuch

 User

 256

 5. Overview of tools

 257

 This chapter contains an overview of the three main tools used in building Debian Live systems: live-build, live-boot and live-config.

 258
 [bookmark: 258]
 [bookmark: h5.1][bookmark: live-build]5.1 live-build

 259

 live-build is a collection of scripts to build Debian Live systems. These scripts are also referred to as "commands".

 260

 The idea behind live-build is to be a framework that uses a configuration directory to completely automate and customize all aspects of building a Live image.

 261

 Many concepts are similar to those in the debhelper Debian package tools written by Joey Hess:

 262
 	
 The scripts have a central location for configuring their operation. In debhelper, this is the debian/ subdirectory of a package tree. For example, dh_install will look, amongst others, for a file called debian/install to determine which files should exist in a particular binary package. In much the same way, live-build stores its configuration entirely under a config/ subdirectory.

 263
 	
 The scripts are independent - that is to say, it is always safe to run each command.

 264

 Unlike debhelper, live-build contains a tool to generate a skeleton configuration directory, lb config. This could be considered to be similar to tools such as dh-make. For more information about lb config, please see The lb config command.

 265

 The remainder of this section discusses the three most important commands:

 266
 	
 lb config: Responsible for initializing a Live system configuration directory. See The lb config command for more information.

 267
 	
 lb build: Responsible for starting a Live system build. See The lb build command for more information.

 268
 	
 lb clean: Responsible for removing parts of a Live system build. See The lb clean command for more information.

 269
 [bookmark: 269]
 [bookmark: h5.1.1][bookmark: lb-config]5.1.1 The lb config command

 270

 As discussed in live-build, the scripts that make up live-build source their configuration from a single directory named config/. As constructing this directory by hand would be time-consuming and error-prone, the lb config command can be used to create skeleton configuration folders.

 271

 Issuing lb config without any arguments creates a config/ subdirectory which it populates with some default settings:

 272

 $ lb config

 P: Creating config tree

 $ ls -l

 total 8

 drwxr-xr-x3 user user 4096 Sep7 13:02 auto

 drwxr-xr-x 22 user user 4096 Sep7 13:02 config

 $ ls -l config/

 total 104

 -rw-r--r-- 1 user user 4197 Sep7 13:02 binary

 drwxr-xr-x 2 user user 4096 Sep7 13:02 binary_debian-installer

 drwxr-xr-x 2 user user 4096 Sep7 13:02 binary_debian-installer-includes

 drwxr-xr-x 2 user user 4096 Sep7 13:02 binary_grub

 drwxr-xr-x 2 user user 4096 Sep7 13:02 binary_local-debs

 drwxr-xr-x 2 user user 4096 Sep7 13:02 binary_local-hooks

 drwxr-xr-x 2 user user 4096 Sep7 13:02 binary_local-includes

 drwxr-xr-x 2 user user 4096 Sep7 13:02 binary_local-packageslists

 drwxr-xr-x 2 user user 4096 Sep7 13:02 binary_local-udebs

 drwxr-xr-x 2 user user 4096 Sep7 13:02 binary_rootfs

 drwxr-xr-x 2 user user 4096 Sep7 13:02 binary_syslinux

 -rw-r--r-- 1 user user 2051 Sep7 13:02 bootstrap

 -rw-r--r-- 1 user user 1647 Sep7 13:02 chroot

 drwxr-xr-x 2 user user 4096 Sep7 13:02 chroot_apt

 drwxr-xr-x 2 user user 4096 Sep7 13:02 chroot_local-hooks

 drwxr-xr-x 2 user user 4096 Sep7 13:02 chroot_local-includes

 drwxr-xr-x 2 user user 4096 Sep7 13:02 chroot_local-packages

 drwxr-xr-x 2 user user 4096 Sep7 13:02 chroot_local-packageslists

 drwxr-xr-x 2 user user 4096 Sep7 13:02 chroot_local-patches

 drwxr-xr-x 2 user user 4096 Sep7 13:02 chroot_local-preseed

 drwxr-xr-x 2 user user 4096 Sep7 13:02 chroot_sources

 -rw-r--r-- 1 user user 2954 Sep7 13:02 common

 drwxr-xr-x 2 user user 4096 Sep7 13:02 includes

 -rw-r--r-- 1 user user205 Sep7 13:02 source

 drwxr-xr-x 2 user user 4096 Sep7 13:02 templates

 273

 Using lb config without any arguments would be suitable for users who need a very basic image, or who intend to later provide a more complete configuration via auto/config (see Managing a configuration for details).

 274

 Normally, you will want to specify some options. For example, to include the 'gnome' package list in your configuration:

 275

 $ lb config -p gnome

 276

 It is possible to specify many options, such as:

 277

 $ lb config --binary-images net --hostname live-machine --username live-user ...

 278

 A full list of options is available in the lb_config man page.

 279
 [bookmark: 279]
 [bookmark: h5.1.2][bookmark: lb-build]5.1.2 The lb build command

 280

 The lb build command reads in your configuration from the config/ directory. It then runs the lower lower level commands needed to build your Live system.

 281
 [bookmark: 281]
 [bookmark: h5.1.3][bookmark: lb-clean]5.1.3 The lb clean command

 282

 It is the job of the lb clean command to remove various parts of a build so subsequent builds can start from a clean state.

 283
 [bookmark: 283]
 [bookmark: h5.2][bookmark: live-boot]5.2 The live-boot package

 284

 live-boot is a collection of scripts providing hooks for the initramfs-tools, used to generate an initramfs capable of booting live systems, such as those created by live-build. This includes the Debian Live ISOs, netboot tarballs, and USB stick images.

 285

 At boot time it will look for read-only media containing a "/live" directory where a root filesystem (often a compressed filesystem image like squashfs) is stored. If found, it will create a writable environment, using aufs, for Debian like systems to boot from.

 286

 More information on initial ramfs in Debian can be found in the Debian Linux Kernel Handbook at ‹http://kernel-handbook.alioth.debian.org/› in the chapter on initramfs.

 287
 [bookmark: 287]
 [bookmark: h5.3][bookmark: live-config]5.3 The live-config package

 288

 live-config consists of the scripts that run at boot time after live-boot to configure the live system automatically. It handles such tasks as setting the hostname, locales and timezone, creating the live user, inhibiting cron jobs and performing autologin of the live user.

 [image: <<previous]

 [image: ^up^]

 [image: next>>]

 managing-a-configuration -
 Debian Live Handbuch

 [image: <<previous]

 [image: ^up^]

 [image: next>>]

 Debian Live Handbuch

 User

 289

 6. Managing a configuration

 290

 This chapter explains how to manage a live configuration from initial creation, through successive revisions and successive releases of both the live-build software and the live image itself.

 291
 [bookmark: 291]
 [bookmark: 6.1][bookmark: h6.1]6.1 Use auto to manage configuration changes

 292

 Live configurations rarely are perfect on the first try. You'll likely need to make a series of revisions until you are satisfied. However, inconsistencies can creep into your configuration from one revision to the next if you aren't careful. The main problem is, once a variable is given a default value, that value will not be recomputed from other variables that may change in later revisions.

 293

 For example, when the distribution is first set, many 'dependent' variables are given default values that suit that distribution. However, if you later decide to change the distribution, those dependent variables continue to retain old values that are no longer appropriate.

 294

 A second, related problem is that if you run lb config and then upgrade to a new version of live-build that has changed one of the variable names, you will discover this only by manual review of the variables in your config/* files, which you will then need to use to set the appropriate option again.

 295

 All of this would be a terrible nuisance if it weren't for auto/* scripts, simple wrappers to the lb config, lb build and lb clean commands that are designed to help you manage your configuration. Simply create an auto/config script containing lb config command with all desired options, and an auto/clean that removes the files containing configuration variable values, and each time you lb config and lb clean, these files will be executed. This will ensure that your configuration is kept internally consistent from one revision to the next and from one live-build release to the next (though you will still have to take care and read the documentation when you upgrade live-build and make adjustments as needed).

 296
 [bookmark: 296]
 [bookmark: 6.2][bookmark: h6.2]6.2 Example auto scripts

 297

 Use auto script examples such as the following as the starting point for your new live-build configuration. Take note that when you call the lb command that the auto script wraps, you must specify noauto as its parameter to ensure that the auto script isn't called again, recursively. Also, don't forget to ensure the scripts are executable (e.g. chmod 755 auto/*).

 298

 auto/config

 299

 #!/bin/sh

 lb config noauto \

--packages-lists "standard" \

"${@}"

 300

 auto/clean

 301

 #!/bin/sh

 lb clean noauto "${@}"

 rm -f config/binary config/bootstrap \

config/chroot config/common config/source

 rm -f binary.log

 302

 auto/build

 303

 #!/bin/sh

 lb build noauto "${@}" 2>&1 | tee binary.log

 304

 We now ship example auto scripts with live-build based on the examples above. You may copy those as your starting point.

 305

 $ cp /usr/share/live/build/examples/auto/* auto/

 306

 Edit auto/config, changing or adding any options as you see fit. In the example above, --packages-lists standard is set to the default value. Change this to an appropriate value for your image (or delete it if you want to use the default) and add any additional options in continuation lines that follow.

 [image: <<previous]

 [image: ^up^]

 [image: next>>]

 customization-overview -
 Debian Live Handbuch

 [image: <<previous]

 [image: ^up^]

 [image: next>>]

 Debian Live Handbuch

 User

 307

 7. Customization overview

 308

 This chapter gives an overview of the various ways in which you may customize a Debian Live system.

 309
 [bookmark: 309]
 [bookmark: 7.1][bookmark: h7.1]7.1 Build time vs. boot time configuration

 310

 Live system configuration options are divided into build-time options which are options that are applied at build time and boot-time options which are applied at boot time. Boot-time options are further divided into those occurring early in the boot, applied by the live-boot package, and those that happen later in the boot, applied by live-config. Any boot-time option may be modified by the user by specifying it at the boot prompt. The image may also be built with default boot parameters so users can normally just boot directly to the live system without specifying any options when all of the defaults are suitable. In particular, the argument to lb --bootappend-live consists of any default kernel command line options for the Live system, such as persistence, keyboard layouts, or timezone. See Customizing locale and language, for example.

 311

 Build-time configuration options are described in the lb config man page. Boot-time options are described in the man pages for live-boot and live-config. Although the live-boot and live-config packages are installed within the live system you are building, it is recommended that you also install them on your build system for easy reference when you are working on your configuration. It is safe to do so, as none of the scripts contained within them are executed unless the system is configured as a live system.

 312
 [bookmark: 312]
 [bookmark: h7.2][bookmark: stages-of-the-build]7.2 Stages of the build

 313

 The build process is divided into stages, with various customizations applied in sequence in each. The first stage to run is the bootstrap stage. This is the initial phase of populating the chroot directory with packages to make a barebones Debian system. This is followed by the chroot stage, which completes the construction of chroot directory, populating it with all of the packages listed in the configuration, along with any other materials. Most customization of content occurs in this stage. The final stage of preparing the live image is the binary stage, which builds a bootable image, using the contents of the chroot directory to construct the root filesystem for the Live system, and including the installer and any other additional material on the target media outside of the Live system's filesystem. After the live image is built, if enabled, the source tarball is built in the source stage.

 314

 Within each of these stages, there is a particular sequence in which commands are applied. These are arranged in such a way as to ensure customizations can be layered in a reasonable fashion. For example, within the chroot stage, preseeds are applied before any packages are installed, packages are installed before any locally included files or patches are applied, and hooks are run later, after all of the materials are in place.

 315
 [bookmark: 315]
 [bookmark: 7.3][bookmark: h7.3]7.3 Supplement lb config with files

 316

 Although lb config does create a skeletal configuration in the config/ directory, to accomplish your goals, you may need to provide additional files in subdirectories of config/. Depending on where the files are stored in the configuration, they may be copied into the live system's filesystem or into the binary image filesystem, or may provide build-time configurations of the system that would be cumbersome to pass as command-line options. You may include things such as custom lists of packages, custom artwork, or hook scripts to run either at build time or at boot time, boosting the already considerable flexibility of debian-live with code of your own.

 317
 [bookmark: 317]
 [bookmark: 7.4][bookmark: h7.4]7.4 Customization tasks

 318

 The following chapters are organized by the kinds of customization task users typically perform: Customizing package installation, Customizing contents and Customizing locale and language cover just a few of the things you might want to do.

 [image: <<previous]

 [image: ^up^]

 [image: next>>]

 customizing-package-installation -
 Debian Live Handbuch

 [image: <<previous]

 [image: ^up^]

 [image: next>>]

 Debian Live Handbuch

 User

 319

 8. Customizing package installation

 320

 Perhaps the most basic customization of a Debian live system is the selection of packages to be included in the image. This chapter guides you through the various build-time options to customize live-build' s installation of packages. The broadest choices influencing which packages are available to install in the image are the distribution and archive areas. To ensure decent download speeds, you should choose a nearby distribution mirror. You can also add your own repositories for backports, experimental or custom packages, or include packages directly as files. You can define your own lists of packages to include, use live-build' s predefined lists, use tasksel tasks, or a combination of all three. Finally, a number of options give some control over apt, or if you prefer, aptitude, at build time when packages are installed. You may find these handy if you use a proxy, want to disable installation of recommended packages to save space, or need to control which versions of packages are installed via APT pinning, to name a few possibilities.

 321
 [bookmark: 321]
 [bookmark: 8.1][bookmark: h8.1]8.1 Package sources

 322
 [bookmark: 322]
 [bookmark: 8.1.1][bookmark: h8.1.1]8.1.1 Distribution, archive areas and mode

 323

 The distribution you choose has the broadest impact on which packages are available to include in your live image. Specify the codename, which defaults to squeeze for the Squeeze version of live-build. Any current distribution carried in the Debian archive may be specified by its codename here. (See Terms for more details.) The --distribution option not only influences the source of packages within the archive, but also instructs live-build to behave as needed to build each supported distribution. For example, to build against the unstable release, Sid, specify:

 324

 $ lb config --distribution sid

 325

 Within the distribution archive, archive areas are major divisions of the archive. In Debian, these are main, contrib and non-free. Only main contains software that is official a part of the Debian distribution, hence that is the default. One or more values may be specified, e.g.

 326

 $ lb config --archive-areas "main contrib"

 327

 Experimental support is available for some Debian derivatives through a --mode option. By default, this option is set to debian, even if you are building on a non-Debian system. If you specify --mode ubuntu or --mode emdebian, the distribution names and archive areas for the specified derivative are supported instead of the ones for Debian. The mode also modifies live-build behaviour to suit the derivatives.

 328

 Note: The projects for whom these modes were added are primarily responsible for supporting users of these options. The Debian live project, in turn, provides development support on a best-effort basis only, based on feedback from the derivative projects as we do not develop or support these derivatives ourselves.

 329
 [bookmark: 329]
 [bookmark: 8.1.2][bookmark: h8.1.2]8.1.2 Distribution mirrors

 330

 The Debian archive is replicated across a large network of mirrors around the world so that people in each region can choose a nearby mirror for best download speed. Each of the --mirror-* options governs which distribution mirror is used at various stages of the build. Recall from Stages of the build that the bootstrap stage is when the chroot is initially populated by debootstrap with a minimal system, and the chroot stage is when the chroot used to construct the live system's filesystem is built. Thus, the corresponding mirror switches are used for those stages, and later, in the binary stage, the --mirror-binary and --mirror-binary-security values are used, superceding any mirrors used in an earlier stage.

 331
 [bookmark: 331]
 [bookmark: h8.1.3][bookmark: distribution-mirrors-build-time]8.1.3 Distribution mirrors used at build time

 332

 To set the distribution mirrors used at build time to point at a local mirror, it is sufficient to set --mirror-bootstrap and --mirror-chroot-security as follows.

 333

 $ lb config --mirror-bootstrap http://localhost/debian/ \

--mirror-chroot-security http://localhost/debian-security/

 334

 The chroot mirror, specified by --mirror-chroot, defaults to the --mirror-bootstrap value.

 335
 [bookmark: 335]
 [bookmark: 8.1.4][bookmark: h8.1.4]8.1.4 Distribution mirrors used at run time

 336

 The --mirror-binary* options govern the distribution mirrors placed in the binary image. These may be used to install additional packages while running the live system. The defaults employ cdn.debian.net, a service that chooses a geographically close mirror based on the user's IP number. This is a suitable choice when you cannot predict which mirror will be best for all of your users. Or you may specify your own values as shown in the example below. An image built from this configuration would only be suitable for users on a network where "mirror" is reachable.

 337

 $ lb config --mirror-binary http://mirror/debian/ \

--mirror-binary-security http://mirror/debian-security/

 338
 [bookmark: 338]
 [bookmark: h8.1.5][bookmark: additional-repositories]8.1.5 Additional repositories

 339

 You may add more repositories, broadening your package choices beyond what is available in your target distribution. These may be, for example, for backports, experimental or custom packages. To configure additional repositories, create config/chroot_sources/your-repository.chroot, and/or config/chroot_sources/your-repository.binary files. As with the --mirror-* options, these govern the repositories used in the chroot stage when building the image, and in the binary stage, i.e. for use when running the live system.

 340

 For example, config/chroot_sources/live.chroot allows you to install packages from the debian live snapshot repository at live system build time.

 341

 deb http://live.debian.net/ sid-snapshots main contrib non-free

 342

 If you add the same line to config/chroot_sources/live.binary, the repository will be added to your live system's /etc/apt/sources.list.d/ directory.

 343

 If such files exist, they will be picked up automatically.

 344

 You should also put the GPG key used to sign the repository into config/chroot_sources/your-repository.{binary,chroot}.gpg files.

 345

 Note: some preconfigured package repositories are available for easy selection through the --repository option, e.g. for enabling live snapshots, a simple command is enough to enable it:

 346

 $ lb config --repository live.debian.net

 347
 [bookmark: 347]
 [bookmark: h8.2][bookmark: choosing-packages-to-install]8.2 Choosing packages to install

 348

 There are a number of ways to choose which packages live-build will install in your image, covering a variety of different needs. You can simply name individual packages to install, either with the --packages option for a few packages, or in a package list of your own for larger numbers. You can also choose larger predefined lists of packages, or use APT tasks. And finally, you may place package files in your config/ tree, which is well suited to testing of new or experimental packages before they are available from a repository.

 349
 [bookmark: 349]
 [bookmark: 8.2.1][bookmark: h8.2.1]8.2.1 Choosing a few packages

 350

 When the number of packages added is small, simply specify --packages. For example:

 351

 $ lb config --packages "package1 package2 package3"

 352

 The behaviour of live-build when specifying a package that does not exist is determined by your choice of APT utility. See Choosing apt or aptitude for more details.

 353

 If you need to specify a large number of packages to be installed or you need flexibility regarding which packages to install, use package lists as discussed in the following section, Package lists.

 354
 [bookmark: 354]
 [bookmark: h8.2.2][bookmark: package-lists]8.2.2 Package lists

 355

 Package lists are a powerful way of expressing which packages should be installed. The list syntax supports included files and conditional sections which makes it easy to build lists from other lists and adapt them for use in multiple configurations. You can use predefined package lists, providing in a modular fashion package selections from each of the major desktop environments and some special purpose lists, as well as standard lists the others are based upon. You can also provide your own package lists, or use a combination of both.

 356
 [bookmark: 356]
 [bookmark: 8.2.3][bookmark: h8.2.3]8.2.3 Predefined package lists

 357

 The simplest way to use lists is to specify one or more predefined lists with the --packages-lists option. For example:

 358

 $ lb config --packages-lists "gnome-core rescue"

 359

 In addition to these lists, live-build supports four virtual package lists: gnome-desktop, kde-desktop, lxde-desktop and xfce-desktop, each of which provide a more extensive selection of packages that corresponds with Debian Installer defaults for these desktop environments. See Desktop and language tasks for more details.

 360

 Note: The prebuilt GNOME, KDE, LXDE and XFCE images available for download at ‹http://live.debian.net› are built using the corresponding virtual *-desktop lists.

 361

 The default location for the list files on your system is /usr/share/live/build/lists/. To determine the packages in a given list, read the corresponding file, paying attention to included files and conditionals as described in the following sections.

 362
 [bookmark: 362]
 [bookmark: 8.2.4][bookmark: h8.2.4]8.2.4 Local package lists

 363

 You may supplement or replace entirely the supplied lists using local package lists stored in config/chroot_local-packageslists/.

 364

 Package lists that exist in this directory need to have a .list suffix in order to be processed. Local package lists always override package lists distributed with live-build. This can cause undesired effects, we therefore recommend to use unique names for local package lists.

 365
 [bookmark: 365]
 [bookmark: 8.2.5][bookmark: h8.2.5]8.2.5 Local binary package lists

 366

 In case you want to include some required .deb packages to live media's pool/ (without installing them onto the live image) you may need to use lists using binary local package lists stored in config/binary_local-packageslists/. Such media can be used as a customized Debian install image for offline installations.

 367

 Package lists that exist in this directory need to have a .list suffix in order to be processed.

 368
 [bookmark: 368]
 [bookmark: 8.2.6][bookmark: h8.2.6]8.2.6 Extending a provided package list using includes

 369

 The package lists that are included with live-build make extensive use of includes. Refer to these in the /usr/share/live/build/lists/ directory, as they serve as good examples of how to write your own lists.

 370

 For example, to make a list that includes the predefined gnome list plus iceweasel, create config/chroot_local-packageslists/mygnome.list with the following contents:

 371

 #include <gnome>

 iceweasel

 372
 [bookmark: 372]
 [bookmark: 8.2.7][bookmark: h8.2.7]8.2.7 Using conditionals inside package lists

 373

 Any of the live-build configuration variables stored in config/* (minus the LB_ prefix) may be used in conditional statements in package lists. Generally, this means any lb config option uppercased and with dashes changed to underscores. But in practice, it is only the ones that influence package selection that make sense, such as DISTRIBUTION, ARCHITECTURE or ARCHIVE_AREAS.

 374

 For example, to install ia32-libs if the --architecture amd64 is specified:

 375

 #if ARCHITECTURE amd64

 ia32-libs

 #endif

 376

 You may test for any one of a number of values, e.g. to install memtest86+ if either --architecture i386 or --architecture amd64 is specified:

 377

 #if ARCHITECTURE i386 amd64

 memtest86+

 #endif

 378

 You may also test against variables that may contain more than one value, e.g. to install vrms if either contrib or non-free is specified via --archive-areas:

 379

 #if ARCHIVE_AREAS contrib non-free

 vrms

 #endif

 380

 A conditional may surround an #include directive:

 381

 #if ARCHITECTURE amd64

 #include <gnome-full>

 #endif

 382

 The nesting of conditionals is not supported.

 383
 [bookmark: 383]
 [bookmark: 8.2.8][bookmark: h8.2.8]8.2.8 Tasks

 384

 The Debian Installer offers the user choices of a number of preselected lists of packages, each one focused on a particular kind of system, or task a system may be used for, such as "Graphical desktop environment", "Mail server" or "Laptop". These lists are called "tasks" and are supported by APT through the "Task:" field. You can specify one or more tasks in live-build via the --tasks option, as in the example below.

 385

 $ lb config --tasks "mail-server file-server"

 386

 The primary tasks available in the Debian Installer can be listed with tasksel --list-tasks in the live system. The contents of any task, including ones not included in this list, may be examined with tasksel --task-packages.

 387
 [bookmark: 387]
 [bookmark: h8.2.9][bookmark: desktop-and-language-tasks]8.2.9 Desktop and language tasks

 388

 Desktop and language tasks are special cases. In the Debian Installer, if the medium was prepared for a particular desktop environment flavour, the corresponding task will be automatically installed. Thus, there are gnome-desktop, kde-desktop, lxde-desktop and xfce-desktop tasks, none of which are offered in tasksel's menu. Likewise, there are no menu entries for tasks for languages, but the user's language choice during the install influences the selection of corresponding language tasks.

 389

 In live-build, therefore, these special cases are also given special consideration, but with three notable differences at the time of writing.

 390

 First, there is no provision made yet automatically for language tasks, although a subset of those packages are included if you specify lb config --language. If you need those tasks, which include such things as language-specific fonts and input-method packages, you need to specify them in your configuration. For example:

 391

 $ lb config --tasks "japanese japanese-desktop japanese-gnome-desktop"

 392

 Second, live-build supports *-desktop virtual package lists for each of the desktop flavours mentioned above, which select the standard-x11 predefined package list, the corresponding *-desktop task and three additional tasks: desktop, standard and laptop. So, for example, if you specify --packages-lists gnome-desktop, it is equivalent to specifying --packages debian-installer-launcher --packages-lists standard-x11 --tasks "gnome-desktop desktop standard laptop".

 393

 Third, if any of the tasks for these desktop flavours are selected, either explicitly through --tasks or implicitly by --packages-lists, live-build will preseed the corresponding desktop value for Debian Installer (if it is included) to ensure it follows its own rules for installing different desktop flavours.

 394

 Note: There is also an experimental --language option that has an overlapping purpose with language tasks. For any language for which it is known that there are *-l10n packages, if --language is specified, those packages will be installed. Furthermore, if any syslinux templates matching the language are found, they will be used instead of the default English templates. The package selection done by --language is a poor approximation of language tasks, as it requires that the list of packages to include per language be maintained internally in live-build, and besides, language tasks are more comprehensive and flexible. However, the syslinux aspect is still useful. Thus, if you use --bootloader syslinux and templates for the specified language exist either in /usr/share/live/build/templates/syslinux/ or config/templates/syslinux/, consider using this option, possibly in combination with tasks to ensure all relevant packages are installed. For example:

 395

 $ lb config --language es

 396

 Even so, it is limited in that it only supports a single language and a single bootloader. Therefore, for all of these reasons, the future of this option is under review, possibly to be replaced with something entirely different in the next major release of live-build.

 397
 [bookmark: 397]
 [bookmark: h8.3][bookmark: installing-modified-or-third-party-packages]8.3 Installing modified or third-party packages

 398

 Whilst it is against the philosophy of Debian Live, it may sometimes be necessary to build a Live system with modified versions of packages that are in the Debian repository. This may be to modify or support additional features, languages and branding, or even to remove elements of existing packages that are undesirable. Similarly, "third-party" packages may be used to add bespoke and/or proprietary functionality.

 399

 This section does not cover advice regarding building or maintaining modified packages. Joachim Breitner's 'How to fork privately' method from ‹http://www.joachim-breitner.de/blog/archives/282-How-to-fork-privately.html› may be of interest, however. The creation of bespoke packages is covered in the Debian New Maintainers' Guide at ‹http://www.debian.org/doc/maint-guide/› and elsewhere.

 400

 There are two ways of installing modified custom packages:

 401
 	
 chroot_local-packages

 402
 	
 Using a custom APT repository

 403

 Using chroot_local-packages is simpler to achieve and useful for "one-off" customizations but has a number of drawbacks, whilst using a custom APT repository is more time-consuming to set up.

 404
 [bookmark: 404]
 [bookmark: 8.3.1][bookmark: h8.3.1]8.3.1 Using chroot_local-packages to install custom packages

 405

 To install a custom package, simply copy it to the config/chroot_local-packages/ directory. Packages that are inside this directory will be automatically installed into the live system during build - you do not need to specify them elsewhere.

 406

 Packages must be named in the prescribed way. One simple way to do this is to use dpkg-name.

 407

 Using chroot_local-packages for installation of custom packages has disadvantages:

 408
 	
 It is not possible to use secure APT.

 409
 	
 You must install all appropriate packages in the config/chroot_local-packages/ directory.

 410
 	
 It does not lend itself to storing Debian Live configurations in revision control.

 411
 [bookmark: 411]
 [bookmark: 8.3.2][bookmark: h8.3.2]8.3.2 Using an APT repository to install custom packages

 412

 Unlike using chroot_local-packages, when using a custom APT repository you must ensure that you specify the packages elsewhere. See Choosing packages to install for details.

 413

 Whilst it may seem unnecessary effort to create an APT repository to install custom packages, the infrastructure can be easily re-used at a later date to offer updates of the modified packages.

 414
 [bookmark: 414]
 [bookmark: 8.3.3][bookmark: h8.3.3]8.3.3 Custom packages and APT

 415

 live-build uses APT to install all packages into the live system so will therefore inherit behaviours from this program. One relevant example is that (assuming a default configuration) given a package available in two different repositories with different version numbers, APT will elect to install the package with the higher version number.

 416

 Because of this, you may wish to increment the version number in your custom packages' debian/changelog files to ensure that your modified version is installed over one in the official Debian repositories. This may also be achieved by altering the live system's APT pinning preferences - see APT pinning for more information.

 417
 [bookmark: 417]
 [bookmark: 8.4][bookmark: h8.4]8.4 Configuring APT at build time

 418

 You can configure APT through a number of options applied only at build time. (APT configuration used in the running live system may be configured in the normal way for live system contents, that is, by including the appropriate configurations through config/chroot_local_includes/.) For a complete list, look for options starting with apt in the lb_config man page.

 419
 [bookmark: 419]
 [bookmark: h8.4.1][bookmark: choosing-apt-or-aptitude]8.4.1 Choosing apt or aptitude

 420

 You can elect to use either apt or aptitude when installing packages at build time. Which utility is used is governed by the --apt argument to lb config. Choose the method implementing the preferred behaviour for package installation, the notable difference being how missing packages are handled.

 421
 	
 apt: With this method, if a missing package is specified, the package installation will fail. This is the default setting.

 422
 	
 aptitude: With this method, if a missing package is specified, the package installation will succeed.

 423
 [bookmark: 423]
 [bookmark: 8.4.2][bookmark: h8.4.2]8.4.2 Using a proxy with APT

 424

 One commonly required APT configuration is to deal with building an image behind a proxy. You may specify your APT proxy with the --apt-ftp-proxy or --apt-http-proxy options as needed, e.g.

 425

 $ lb config --apt-http-proxy http://proxy/

 426
 [bookmark: 426]
 [bookmark: 8.4.3][bookmark: h8.4.3]8.4.3 Tweaking APT to save space

 427

 You may find yourself needing to save some space on the image media, in which case one or the other or both of the following options may be of interest.

 428

 If you don't want to include APT indices in the image, you can omit those with:

 429

 $ lb config --binary-indices false

 430

 This will not influence the entries in /etc/apt/sources.list, but merely whether /var/lib/apt contains the indices files or not. The tradeoff is that APT needs those indices in order to operate in the live system, so before performing apt-cache search or apt-get install, for instance, the user must apt-get update first to create those indices.

 431

 If you find the installation of recommended packages bloats your image too much, you may disable that default option of APT with:

 432

 $ lb config --apt-recommends false

 433

 The tradeoff here is that if you don't install recommended packages for a given package, that is, "packages that would be found together with this one in all but unusual installations" (Debian Policy Manual, section 7.2), some packages that you actually need may be omitted. Therefore, we suggest you review the difference turning off recommends makes to your packages list (see the binary.packages file generated by lb build) and re-include in your list any missing packages that you still want installed. Alternatively, if you find you only want a small number of recommended packages left out, leave recommends enabled and set a negative APT pin priority on selected packages to prevent them from being installed, as explained in APT pinning.

 434
 [bookmark: 434]
 [bookmark: 8.4.4][bookmark: h8.4.4]8.4.4 Passing options to apt or aptitude

 435

 If there is not an lb config option to alter APT's behaviour in the way you need, use --apt-options or --aptitude-options to pass any options through to your configured APT tool. See the man pages for apt and aptitude for details.

 436
 [bookmark: 436]
 [bookmark: h8.4.5][bookmark: apt-pinning]8.4.5 APT pinning

 437

 For background, please first read the apt_preferences(5) man page. APT pinning can be configured either for build time, or else for run time. For the former, create config/chroot_apt/preferences. For the latter, create config/chroot_local-includes/etc/apt/preferences.

 438

 Let's say you are building a Squeeze live system but need all live-* packages to be installed from Sid at build time. You need to add Sid to your APT sources and pin it so that only the packages you want are installed from it at build time and all others are taken from the target system distribution, Squeeze. The following will accomplish this:

 439

 $ echo "deb http://mirror/debian sid main" > config/chroot_sources/sid.chroot

 $ cat >>config/chroot_apt/preferences <<END

 Package: live-*

 Pin: release n=sid

 Pin-Priority: 600

 Package: *

 Pin: release n=sid

 Pin-Priority: 1

 END

 440

 Negative pin priorities will prevent a package from being installed, as in the case where you do not want a package that is recommended by another package. Suppose you are building a GNOME image but don't want the user prompted to store wifi passwords in the keyring, so you want to omit the recommended gnome-keyring package. This can be done by adding the following stanza to config/chroot_apt/preferences:

 441

 Package: gnome-keyring

 Pin: version *

 Pin-Priority: -1

 [image: <<previous]

 [image: ^up^]

 [image: next>>]

 customizing-contents -
 Debian Live Handbuch

 [image: <<previous]

 [image: ^up^]

 [image: next>>]

 Debian Live Handbuch

 User

 442

 9. Customizing contents

 443

 This chapter discusses fine-tuning customization of the live system contents beyond merely choosing which packages to include. Includes allow you to add or replace arbitrary files in your Debian Live image, hooks allow you to execute arbitrary commands at different stages of the build and at boot time, and preseeding allows you to configure packages when they are installed by supplying answers to debconf questions.

 444
 [bookmark: 444]
 [bookmark: 9.1][bookmark: h9.1]9.1 Includes

 445

 While ideally a Debian live system would include files entirely provided by unmodified Debian packages, it is sometimes convenient to provide or modify some content by means of files. Using includes, it is possible to add (or replace) arbitrary files in your Debian Live image. live-build provides three mechanisms for using them:

 446
 	
 Chroot local includes: These allow you to add or replace files to the chroot/Live filesystem. Please see Live/chroot local includes for more information.

 447
 	
 Binary local includes: These allow you to add or replace files in the binary image. Please see Binary local includes for more information.

 448
 	
 Binary includes: These allow you to add or replace Debian specific files in the binary image, such as the templates and tools directories. Please see Binary includes for more information.

 449

 Please see Terms for more information about the distinction between the "Live" and "binary" images.

 450
 [bookmark: 450]
 [bookmark: h9.1.1][bookmark: live-chroot-local-includes]9.1.1 Live/chroot local includes

 451

 Chroot local includes can be used to add or replace files in the chroot/Live filesystem so that they may be used in the Live system. A typical use is to populate the skeleton user directory (/etc/skel) used by the Live system to create the live user's home directory. Another is to supply configuration files that can be simply added or replaced in the image without processing; see Live/chroot local hooks if processing is needed.

 452

 To include files, simply add them to your config/chroot_local-includes directory. This directory corresponds to the root directory (/) of the live system. For example, to add a file /var/www/index.html in the live system, use:

 453

 $ mkdir -p config/chroot_local-includes/var/www

 $ cp /path/to/my/index.html config/chroot_local-includes/var/www

 454

 Your configuration will then have the following layout:

 455

 -- config

[...]

|-- chroot_local-includes

|`-- var

|`-- www

|`-- index.html

[...]

`-- templates

 456

 Chroot local includes are installed after package installation so that files installed by packages are overwritten.

 457
 [bookmark: 457]
 [bookmark: h9.1.2][bookmark: binary-local-includes]9.1.2 Binary local includes

 458

 To include material such as documentation or videos on the media filesystem so that it is accessible immediately upon insertion of the media without booting the Live system, you can use binary local includes. This works in a similar fashion to chroot local includes. For example, suppose the files ~/video_demo.* are demo videos of the live system described by and linked to by an HTML index page. Simply copy the material to #{config/binary_local-includes/} as follows:

 459

 $ cp ~/video_demo.* config/binary_local-includes/

 460

 These files will now appear in the root directory of the live media.

 461
 [bookmark: 461]
 [bookmark: h9.1.3][bookmark: binary-includes]9.1.3 Binary includes

 462

 live-build has some standard files (like documentation) that gets included in the default configuration on every live media. This can be disabled with:

 463

 $ lb config --includes none

 464

 Otherwise, the material will be installed by live-build in includes by default on the media filesystem, or else you can specify an alternate path with --includes.

 465
 [bookmark: 465]
 [bookmark: 9.2][bookmark: h9.2]9.2 Hooks

 466

 Hooks allow commands to be performed in the chroot and binary stages of the build in order to customize the image.

 467
 [bookmark: 467]
 [bookmark: h9.2.1][bookmark: live-chroot-local-hooks]9.2.1 Live/chroot local hooks

 468

 To run commands in the chroot stage, create a hook script containing the commands in the config/chroot_local-hooks directory. The hook will run in the chroot after the rest of your chroot configuration has been applied, so remember to ensure your configuration includes all packages and files your hook needs in order to run. See the example chroot hook scripts for various common chroot customization tasks provided in /usr/share/live/build/examples/hooks which you can copy or symlink to use them in your own configuration.

 469
 [bookmark: 469]
 [bookmark: 9.2.2][bookmark: h9.2.2]9.2.2 Boot-time hooks

 470

 To execute commands at boot time, you can supply live-config hooks as explained in the "Customization" section of its man page. Examine live-config' s own hooks provided in /lib/live/config/, noting the sequence numbers. Then provide your own hook prefixed with an appropriate sequence number, either as a chroot local include in config/chroot_local-includes/lib/live/config/, or as a custom package as discussed in Installing modified or third-party packages.

 471
 [bookmark: 471]
 [bookmark: 9.2.3][bookmark: h9.2.3]9.2.3 Binary local hooks

 472

 To run commands in the binary stage, create a hook script containing the commands in the config/binary_local-hooks. The hook will run after all other binary commands are run, but before binary_checksums, the very last binary commands The commands in your hook do not run in the chroot, so take care to not modify any files outside of the build tree, or you may damage your build system! See the example binary hook scripts for various common binary customization tasks provided in /usr/share/live/build/examples/hooks which you can copy or symlink to use them in your own configuration.

 473
 [bookmark: 473]
 [bookmark: 9.3][bookmark: h9.3]9.3 Preseeding Debconf questions

 474

 Files in the config/chroot_local-preseed directory are considered to be debconf preseed files and are installed by live-build using debconf-set-selections.

 475

 For more information about debconf, please see debconf(7) in the debconf package.

 [image: <<previous]

 [image: ^up^]

 [image: next>>]

 customizing-run-time-behaviours -
 Debian Live Handbuch

 [image: <<previous]

 [image: ^up^]

 [image: next>>]

 Debian Live Handbuch

 User

 476

 10. Customizing run time behaviours

 477

 All configuration that is done during run time is done by live-config. Here are some most common options of live-config that users are interested in. A full list of all possibilities can be found in the manpage of live-config.

 478
 [bookmark: 478]
 [bookmark: 10.1][bookmark: h10.1]10.1 Customizing the live user

 479

 One important consideration is that the live user is created by live-boot at boot time, not by live-build at build time. This not only influences where materials relating to the live user are introduced in your build, as discussed in Live/chroot local includes, but also any groups and permissions associated with the live user.

 480

 You can specify additional groups that the live user will belong to by preseeding the passwd/user-default-groups debconf value. For example, to add the live user to the fuse group, add the following to a file in the config/chroot_local-preseed directory:

 481

 debconf passwd/user-default-groups string audio cdrom dialout floppy video plugdev netdev powerdev fuse

 482
 [bookmark: 482]
 [bookmark: h10.2][bookmark: customizing-locale-and-language]10.2 Customizing locale and language

 483

 When the live system boots, language is involved in three steps:

 484
 	
 the locale generation

 485
 	
 setting the keyboard layout for the console

 486
 	
 setting the keyboard layout for X

 487

 The default locale when building a Live system is "locales=en_US.UTF-8". To define the locale that should be generated, use the locales parameter in the --bootappend-live option of lb config, e.g.

 488

 $ lb config --bootappend-live "locales=de_CH.UTF-8"

 489

 This parameter can also be used at the kernel command line. You can specify a locale by a full language_country.encoding word.

 490

 Both the console and X keyboard configuration depend on the keyboard-layouts parameter of the --bootappend-live option. Valid options for X keyboard layouts can be found in /usr/share/X11/xkb/rules/base.xml (rather limited to two-letters country codes). To find the value (the two characters) corresponding to a language try searching for the english name of the nation where the language is spoken, e.g:

 491

 $ grep -i sweden -C3 /usr/share/X11/xkb/rules/base.xml | grep name

 <name>se</name>

 492

 To get the locale files for German and Swiss German keyboard layout in X use:

 493

 $ lb config --bootappend-live "locales=de_CH.UTF-8 keyboard-layouts=ch"

 494

 A list of the valid values of the keyboards for the console can be figured with the following command:

 495

 $ for i in $(find /usr/share/keymaps/ -iname "*kmap.gz"); \

do basename $i | head -c -9; echo; done | sort | less

 496

 Alternatively, you can use the console-setup package, a tool to let you configure console layout using X (XKB) definitions; you can then set your keyboard layout more precisely with keyboard-layouts, keyboard-variant, keyboard-options and keyboard-model variables; live-boot will use also these parameters for X configuration. For example, to set up a French system with a French-Dvorak layout (called Bepo) on a TypeMatrix keyboard, both in console and X11, use:

 497

 $ lb config --bootappend-live \

"locales=fr_FR.UTF-8 keyboard-layouts=fr keyboard-variant=bepo keyboard-model=tm2030usb"

 498
 [bookmark: 498]
 [bookmark: h10.3][bookmark: persistence]10.3 Persistence

 499

 A live cd paradigm is a pre-installed system which runs from read-only media, like a cdrom, where writes and modifications do not survive reboots of the host hardware which runs it.

 500

 A Debian Live system is a generalization of this paradigm and thus supports other media in addition to CDs; but still, in its default behaviour, it should be considered read-only and all the run-time evolutions of the system are lost at shutdown.

 501

 Persistence is a common name for different kinds of solutions for saving across reboots some, or all, of this run-time evolution of the system. To understand how it could work it could be handy to know that even if the system is booted and run from read-only media, modification to the files and directories are written on writable media, typically a ram disk (tmpfs) and ram disks' data do not survive reboots.

 502

 The data stored on this ramdisk should be saved on a writable persistent medium like a Hard Disk, a USB key, a network share or even a session of a multisession (re)writable CD/DVD. All these media are supported in Debian Live in different ways, and all but the last one require a special boot parameter to be specified at boot time: persistent.

 503
 [bookmark: 503]
 [bookmark: 10.3.1][bookmark: h10.3.1]10.3.1 Full persistence

 504

 By 'full persistence' it is meant that instead of using a tmpfs for storing modifications to the read-only media (with the copy-on-write, COW, system) a writable partition is used. In order to use this feature a partition with a clean writable supported filesystem on it labeled "live-rw" must be attached on the system at boot time and the system must be started with the boot parameter 'persistent'. This partition could be an ext2 partition on the hard disk or on a usb key created with, e.g.:

 505

 # mkfs.ext2 -L live-rw /dev/sdb1

 506

 If you already have a partition on your device, you could just change the label with one of the following:

 507

 # tune2fs -L live-rw /dev/sdb1 # for ext2,3,4 filesystems

 # dosfslabel /dev/sdb1 live-rw # for a fat filesystem

 508

 But since live system users cannot always use a hard drive partition, and considering that most USB keys have poor write speeds, 'full' persistence could be also used with just image files, so you could create a file representing a partition and put this image file even on a NTFS partition of a foreign OS, with something like:

 509

 $ dd if=/dev/null of=live-rw bs=1G seek=1 # for a 1GB sized image file

 $ /sbin/mkfs.ext2 -F live-rw

 510

 Then copy the live-rw file to a writable partition and reboot with the boot parameter 'persistent'.

 511
 [bookmark: 511]
 [bookmark: 10.3.2][bookmark: h10.3.2]10.3.2 Home automounting

 512

 If during the boot a partition (filesystem) image file or a partition labeled home-rw is discovered, this filesystem will be directly mounted as /home, thus permitting persistence of files that belong to e.g. the default user. It can be combined with full persistence.

 513
 [bookmark: 513]
 [bookmark: 10.3.3][bookmark: h10.3.3]10.3.3 Snapshots

 514

 Snapshots are collections of files and directories which are not mounted while running but which are copied from a persistent device to the system (tmpfs) at boot and which are resynced at reboot/shutdown of the system. The content of a snapshot could reside on a partition or an image file (like the above mentioned types) labeled live-sn, but it defaults to a simple cpio archive named live-sn.cpio.gz. As above, at boot time, the block devices connected to the system are traversed to see if a partition or a file named like that could be found. A power interruption during run time could lead to data loss, hence a tool invoked live-snapshot --refresh could be called to sync important changes. This type of persistence, since it does not write continuously to the persistent media, is the most flash-based device friendly and the fastest of all the persistence systems.

 515

 A /home version of snapshot exists too and its label is home-sn.*; it works the same as the main snapshot but it is only applied to /home.

 516

 Snapshots cannot currently handle file deletion but full persistence and home automounting can.

 517
 [bookmark: 517]
 [bookmark: 10.3.4][bookmark: h10.3.4]10.3.4 Persistent SubText

 518

 If a user would need multiple persistent storage of the same type for different locations or testing, such as live-rw-nonwork and live-rw-work, the boot parameter persistent-subtext used in conjuntion with the boot parameter persistent will allow for multiple but unique persistent media. An example would be if a user wanted to use a persistent partition labeled live-sn-subText they would use the boot parameters of: persistent persistent-subtext=subText.

 519
 [bookmark: 519]
 [bookmark: 10.3.5][bookmark: h10.3.5]10.3.5 Partial remastering

 520

 The run-time modification of the tmpfs could be collected using live-snapshot in a squashfs and added to the cd by remastering the iso in the case of cd-r or adding a session to multisession cd/dvd(rw); live-boot mounts all /live filesystem in order or with the module boot parameter.

 [image: <<previous]

 [image: ^up^]

 [image: next>>]

 customizing-binary -
 Debian Live Handbuch

 [image: <<previous]

 [image: ^up^]

 [image: next>>]

 Debian Live Handbuch

 User

 521

 11. Customizing the binary image

 522
 [bookmark: 522]
 [bookmark: 11.1][bookmark: h11.1]11.1 Bootloader

 523

 live-build uses syslinux as bootloader by default, which is by default configured to pause indefinitely at its splash screen. To adjust this, you can pass --syslinux-timeout TIMEOUT to lb config. The value is specified in units of seconds. A timeout of 0 (zero) disables the timeout completely. For more information please see syslinux(1).

 524
 [bookmark: 524]
 [bookmark: 11.2][bookmark: h11.2]11.2 ISO metadata

 525

 When creating an ISO9660 binary image, you can use the following options to add various textual metadata for your image. This can help you easily identify the version or configuration of an image without booting it.

 526
 	
 LB_ISO_APPLICATION/--iso-application NAME: This should describe the application that will be on the image. The maximum length for this field is 128 characters.

 527
 	
 LB_ISO_PREPARER/--iso-preparer NAME: This should describe the preparer of the image, usually with some contact details. The default for this option is the live-build version you are using, which may help with debugging later. The maximum length for this field is 128 characters.

 528
 	
 LB_ISO_PUBLISHER/--iso-publisher NAME: This should describe the publisher of the image, usually with some contact details. The maximum length for this field is 128 characters.

 529
 	
 LB_ISO_VOLUME/--iso-volume NAME: This should specify the volume ID of the image. This is used as a user-visible label on some platforms such as Windows and Apple Mac OS. The maximum length for this field is 32 characters.

 [image: <<previous]

 [image: ^up^]

 [image: next>>]

 customizing-installer -
 Debian Live Handbuch

 [image: <<previous]

 [image: ^up^]

 [image: next>>]

 Debian Live Handbuch

 User

 530

 12. Customizing Debian Installer

 531

 Debian Live system images can be integrated with Debian Installer. There are a number of different types of installation, varying in what is included and how the installer operates.

 532

 Please note the careful use of capital letters when referring to the "Debian Installer" in this section - when used like this we refer explicitly to the official installer for the Debian system, not anything else. It is often seen abbreviated to "d-i".

 533
 [bookmark: 533]
 [bookmark: 12.1][bookmark: h12.1]12.1 Types of Debian Installer

 534

 The three main types of installer are:

 535

 "Regular" Debian Installer: This is a normal Debian Live image with a seperate kernel and initrd which (when selected from the appropriate bootloader) launches into a standard Debian Installer instance, just as if you had downloaded a CD image of Debian and booted it. Images containing a live system and such an otherwise independent installer are often referred to as "combined images".

 536

 On such images, Debian is installed by fetching and installing .deb packages using debootstrap or cdebootstrap, from the local media or some network-based network, resulting in a standard Debian system being installed to the hard disk.

 537

 This whole process can be preseeded and customized in a number of ways; see the relevant pages in the Debian Installer manual for more information. Once you have a working preseeding file, live-build can automatically put it in the image and enable it for you.

 538

 "Live" Debian Installer: This is a Debian Live image with a separate kernel and initrd which (when selected from the appropriate bootloader) launches into an instance of the Debian Installer.

 539

 Installation will proceed in an identical fashion to the "Regular" installation described above, but at the actual package installation stage, instead of using debootstrap to fetch and install packages, the live filesystem image is copied to the target. This is achieved with a special udeb called live-installer.

 540

 After this stage, the Debian Installer continues as normal, installing and configuring items such as bootloaders and local users, etc.

 541

 Note: to support both normal and live installer entries in the bootloader of the same live media, you must disable live-installer by preseeding #{live-installer/enable=false}.

 542

 "Desktop" Debian Installer: Regardless of the type of Debian Installer included, d-i can be launched from the Desktop by clicking on an icon. This is user friendlier in some situations. In order to make use of this, the debian-installer-launcher package needs to be included.

 543

 Note that by default, live-build does not include Debian Installer images in the images, it needs to be specifically enabled with lb config. Also, please note that for the "Desktop" installer to work, the kernel of the live system must match the kernel d-i uses for the specified architecture. For example:

 544

 $ lb config --architecture i386 --linux-flavours 486 \

--debian-installer live --packages debian-installer-launcher

 545
 [bookmark: 545]
 [bookmark: 12.2][bookmark: h12.2]12.2 Customizing Debian Installer by preseeding

 546

 As described in the Debian Installer Manual, Appendix B at ‹http://www.debian.org/releases/stable/i386/apb.html›, "Preseeding provides a way to set answers to questions asked during the installation process, without having to manually enter the answers while the installation is running. This makes it possible to fully automate most types of installation and even offers some features not available during normal installations." This kind of customization is best accomplished with live-build by placing the configuration in a preseed.cfg file included in config/binary_debian-installer/. For example, to preseed setting the locale to en_US:

 547

 $ echo "d-i debian-installer/locale string en_US" \

>> config/binary_debian-installer/preseed.cfg

 548
 [bookmark: 548]
 [bookmark: 12.3][bookmark: h12.3]12.3 Customizing Debian Installer content

 549

 For experimental or debugging purposes, you might want to include locally built d-i component udeb packages. Place these in config/binary_local-udebs/ to include them in the image. Additional or replacement files and directories may be included in the installer initrd as well, in a similar fashion to Live/chroot local includes, by placing the material in config/binary_debian-installer-includes/.

 [image: <<previous]

 [image: ^up^]

 [image: next>>]

 bugs -
 Debian Live Handbuch

 [image: <<previous]

 [image: ^up^]

 [image: next>>]

 Debian Live Handbuch

 Project

 551

 13. Reporting bugs

 552

 Debian Live is far from being perfect, but we want to make it as close as possible to perfect - with your help. Do not hesitate to report a bug: it is better to fill a report twice than never. However, this chapter includes recommendations how to file good bug reports.

 553

 For the impatient:

 554
 	
 Always check first the image status updates on our homepage at ‹http://live.debian.net/› for known issues.

 555
 	
 Always try to reproduce the bug with the most recent versions of live-build, live-boot, and live-config before submitting a bug report.

 556
 	
 Try to give as specific information as possible about the bug. This includes (at least) the version of live-build, live-boot, and live-config used and the distribution of the live system you are building.

 557
 [bookmark: 557]
 [bookmark: 13.1][bookmark: h13.1]13.1 Known issues

 558

 Because Debian testing and Debian unstable distributions are a moving target, when you specify either as the target system distribution, a successful build may not always be possible.

 559

 If this causes too much difficulty for you, do not build a system based on testing or unstable, but rather, use stable. live-build does always default to the stable release.

 560

 Currently known issues are listed under the section 'status' on our homepage at ‹http://live.debian.net/›.

 561

 It is out of the scope of this manual to train you to correctly identify and fix problems in packages of the development distributions, however, there are two things you can always try: If a build fails when the target distribution is testing, try unstable. If unstable does not work either, revert to testing and pin the newer version of the failing package from unstable (see APT pinning for details).

 562
 [bookmark: 562]
 [bookmark: 13.2][bookmark: h13.2]13.2 Rebuild from scratch

 563

 To ensure that a particular bug is not caused by an uncleanly built system, please always rebuild the whole live system from scratch to see if the bug is reproducible.

 564
 [bookmark: 564]
 [bookmark: 13.3][bookmark: h13.3]13.3 Use up-to-date packages

 565

 Using outdated packages can cause significant problems when trying to reproduce (and ultimately fix) your problem. Make sure your build system is up-to-date and any packages included in your image are up-to-date as well.

 566
 [bookmark: 566]
 [bookmark: h13.4][bookmark: collect-information]13.4 Collect information

 567

 Please provide enough information with your report. At least include the exact version of live-build version where the bug is encountered and steps to reproduce it. Please use common sense and include other relevant information if you think that it might help in solving the problem.

 568

 To make the most out of your bug report, we require at least the following information:

 569
 	
 Architecture of the host system

 570
 	
 Version of live-build on the host system

 571
 	
 Version of live-boot on the live system

 572
 	
 Version of live-config on the live system

 573
 	
 Version of debootstrap and/or cdebootstrap on the host system

 574
 	
 Architecture of the live system

 575
 	
 Distribution of the live system

 576
 	
 Version of the kernel on the live system

 577

 You can generate a log of the build process by using the tee command. We recommend doing this automatically with an auto/build script; (see Managing a configuration for details).

 578

 # lb build 2>&1 | tee build.log

 579

 At boot time, live-boot stores a log in /var/log/live.log (or /var/log/live-boot.log).

 580

 Additionally, to rule out other errors, it is always a good idea to tar up your config/ directory and upload it somewhere (do not send it as an attachment to the mailing list), so that we can try to reproduce the errors you encountered. If this is difficult (e.g. due to size) you can use the output of lb config --dump which produces a summary of your config tree (i.e. lists files in subdirectories of config/ but does not include them).

 581

 Remember to send in any logs that were produced with English locale settings, e.g. run your live-build commands with a leading LC_ALL=C or LC_ALL=en_US.

 582
 [bookmark: 582]
 [bookmark: 13.5][bookmark: h13.5]13.5 Isolate the failing case if possible

 583

 If possible, isolate the failing case to the smallest possible change that breaks. It is not always easy to do this, so if you can't manage it for your report, don't worry. However, if you plan your development cycle well, using small enough change sets per iteration, you may be able to isolate the problem by constructing a simpler 'base' configuration that closely matches your actual configuration plus just the broken change set added to it. If you have a hard time sorting out which of your changes broke, it may be that you are including too much in each change set and should develop in smaller increments.

 584
 [bookmark: 584]
 [bookmark: 13.6][bookmark: h13.6]13.6 Use the correct package to report the bug against

 585

 Where does the bug appear?

 586
 [bookmark: 586]
 [bookmark: 13.6.1][bookmark: h13.6.1]13.6.1 At build time whilst bootstrapping

 587

 live-build first bootstraps a basic Debian system with debootstrap or cdebootstrap. Depending on the bootstrapping tool used and the Debian distribution it is bootstrapping, it may fail. If a bug appears here, check if the error is related to a specific Debian package (most likely), or if it is related to bootstrapping tool itself.

 588

 In both cases, this is not a bug in Debian Live, but rather in Debian itself which we can not fix this directly. Please report such a bug against the bootstrapping tool or the failing package.

 589
 [bookmark: 589]
 [bookmark: 13.6.2][bookmark: h13.6.2]13.6.2 At build time whilst installing packages

 590

 live-build installs additional packages from the Debian archive and depending on the Debian distribution used and the daily archive state, it can fail. If a bug appears here, check if the error is also reproducible on a normal system.

 591

 If this is the case, this is not a bug in Debian Live, but rather in Debian - please report it against the failing package. Running debootstrap separately from the Live system build or running lb bootstrap --debug will give you more information.

 592

 Also, if you are using a local mirror and/or any of sort of proxy and you are experiencing a problem, please always reproduce it first by bootstrapping from an official mirror.

 593
 [bookmark: 593]
 [bookmark: 13.6.3][bookmark: h13.6.3]13.6.3 At boot time

 594

 If your image does not boot, please report it to the mailing list together with the information requested in Collect information. Do not forget to mention, how/when the image failed, in Qemu, Virtualbox, VMWare or real hardware. If you are using a virtualization technology of any kind, please always run it on real hardware before reporting a bug. Providing a screenshot of the failure is also very helpful.

 595
 [bookmark: 595]
 [bookmark: 13.6.4][bookmark: h13.6.4]13.6.4 At run time

 596

 If a package was successfully installed, but fails while actually running the Live system, this is probably a bug in Debian Live. However,

 597
 [bookmark: 597]
 [bookmark: 13.7][bookmark: h13.7]13.7 Do the research

 598

 Before filing the bug, please search the web for the particular error message or symptom you are getting. As it is highly unlikely that you are the only person experiencing a particular problem, there is always a chance that it has been discussed elsewhere, and a possible solution, patch, or workaround has been proposed.

 599

 You should pay particular attention to the Debian Live mailing list, as well as the homepage, as these are likely to contain the most up-to-date information. If such information exists, always include the references to it in your bug report.

 600

 In addition, you should check the current bug lists for live-build, live-boot, and live-config to see whether something similar has been reported already.

 601
 [bookmark: 601]
 [bookmark: 13.8][bookmark: h13.8]13.8 Where to report bugs

 602

 The Debian Live project keeps track of all bugs in the Debian Bug Tracking System (BTS). For information on how to use the system, please see ‹http://bugs.debian.org/›. You can also submit the bugs by using the reportbug command from the package with the same name.

 603

 In general, you should report build time errors against the live-build package, boot time errors against live-boot, and run time errors against live-config. If you are unsure of which package is appropriate or need more help before submitting a bug report, please send a message to the mailing list and we will help you to figure it out.

 604

 Please note that bugs found in distributions derived from Debian (such as Ubuntu and others) should not be reported to the Debian BTS unless they can be also reproduced on a Debian system using official Debian packages.

 [image: <<previous]

 [image: ^up^]

 [image: next>>]

 coding-style -
 Debian Live Handbuch

 [image: <<previous]

 [image: ^up^]

 [image: next>>]

 Debian Live Handbuch

 Project

 605

 14. Coding Style

 606

 This chapter documents the coding style used in live-boot and others.

 607
 [bookmark: 607]
 [bookmark: 14.1][bookmark: h14.1]14.1 Compatibility

 608
 	
 Don't use syntax or semantics that are unique to the Bash shell. For example, the use of array constructs.

 609
 	
 Only use the POSIX subset - for example, use $(foo) over `foo`.

 610
 	
 You can check your scripts with 'sh -n' and 'checkbashisms'.

 611
 [bookmark: 611]
 [bookmark: 14.2][bookmark: h14.2]14.2 Indenting

 612
 	
 Always use tabs over spaces.

 613
 [bookmark: 613]
 [bookmark: 14.3][bookmark: h14.3]14.3 Wrapping

 614
 	
 Generally, lines are 80 chars at maximum.

 615
 	
 Use the "Linux style" of line breaks:

 616

 Bad:

 617

 if foo; then

bar

 fi

 618

 Good:

 619

 if foo

 then

bar

 fi

 620
 	
 The same holds for functions:

 621

 Bad:

 622

 foo () {

bar

 }

 623

 Good:

 624

 foo ()

 {

bar

 }

 625
 [bookmark: 625]
 [bookmark: 14.4][bookmark: h14.4]14.4 Variables

 626
 	
 Variables are always in capital letters.

 627
 	
 Variables that used in lb config always start with LB_ prefix.

 628
 	
 Internal temporary variables in live-build should start with the _LB_ prefix.

 629
 	
 Local variables start with live-build __LB_ prefix.

 630
 	
 Variables in connection to a boot parameter in live-config start with LIVE_.

 631
 	
 All other variables in live-config start with _ prefix.

 632
 	
 Use braces around variables; e.g. write ${FOO} instead of $FOO.

 633
 	
 Always protect variables with quotes to respect potential whitespaces: write "${FOO}" not ${FOO}.

 634
 	
 For consistency reasons, always use quotes when assigning values to variables:

 635

 Bad:

 636

 FOO=bar

 637

 Good:

 638

 FOO="bar"

 639
 	
 If multiple variables are used, quote the full expression:

 640

 Bad:

 641

 if [-f "${FOO}"/foo/"${BAR}"/bar]

 then

foobar

 fi

 642

 Good:

 643

 if [-f "${FOO}/foo/${BAR}/bar"]

 then

foobar

 fi

 644
 [bookmark: 644]
 [bookmark: 14.5][bookmark: h14.5]14.5 Miscellaneous

 645
 	
 Use "|" (without the surround quotes) as a seperator in calls to sed, e.g. "sed -e 's|foo|bar|'" (without "").

 646
 	
 Don't use the test command for comparisons or tests, use "[" "]" (without ""); e.g. "if [-x /bin/foo]; ..." and not "if test -x /bin/foo; ...".

 647
 	
 Use case wherever possible over test, as it's easier to read and faster in execution.

 [image: <<previous]

 [image: ^up^]

 [image: next>>]

 procedures -
 Debian Live Handbuch

 [image: <<previous]

 [image: ^up^]

 [image: next>>]

 Debian Live Handbuch

 Project

 648

 15. Procedures

 649

 This chapter documents the procedures within the Debian Live project for various tasks that need cooperation with other teams in Debian.

 650
 [bookmark: 650]
 [bookmark: 15.1][bookmark: h15.1]15.1 Udeb Uploads

 651

 Before commiting releases of a udeb in d-i svn, one has to call:

 652

 $../../scripts/l10n/output-l10n-changes . -d

 653
 [bookmark: 653]
 [bookmark: 15.2][bookmark: h15.2]15.2 Major Releases

 654

 Releasing a new stable major version of Debian includes a lot of different teams working together to make it happen. At some point, the Live team comes in and builds live system images. The requirements to do this are:

 655
 	
 A mirror containing the released versions for the debian, debian-security and debian-volatile archive which the debian-live buildd can access.

 656
 	
 The names of the image need to be known (e.g. debian-live-VERSION-ARCH-FLAVOUR.iso).

 657
 	
 The packagelists need to have been updated.

 658
 	
 The data from debian-cd needs to be synced (udeb exclude lists).

 659
 	
 The includes from debian-cd needs to be synced (README.*, doc/*, etc.).

 660
 	
 Images are built and mirrored on cdimage.debian.org.

 661
 [bookmark: 661]
 [bookmark: 15.3][bookmark: h15.3]15.3 Point Releases

 662
 	
 Again, we need updated mirror of debian, debian-security and debian-volatile.

 663
 	
 Images are built and mirrored on cdimage.debian.org.

 664
 	
 Send announcement mail.

 665
 [bookmark: 665]
 [bookmark: 15.3.1][bookmark: h15.3.1]15.3.1 Point release announcement template

 666

 An annoucement mail for point releases can be generated using the template below and the following command:

 667

 $ sed \

-e 's|%major%|5.0|g' \

-e 's|%minor%|5.0.2|g' \

-e 's|%codename%|lenny|g' \

-e 's|%release_mail%|2009/msg00007.html|g'

 668

 Please check the mail carefully before sending and pass it to others for proof-reading.

 669

 Debian Live images for Debian GNU/Linux %major% updated

 The Debian Live project is pleased to announce the availability of

 updated Live images for its stable distribution Debian GNU/Linux %major%

 (codename "%codename%").

 The images are available for download at:

<http://cdimage.debian.org/cdimage/release/current-live/>

 This update incorporates the changes made in the %minor% point release,

 which adds corrections for security problems to the stable release

 along with a few adjustments for serious problems. A full list of the

 changes may be viewed at:

<http://lists.debian.org/debian-announce/%release_mail%>

 It also includes the following Live-specific changes:

* [INSERT LIVE-SPECIFIC CHANGE HERE]

* [INSERT LIVE-SPECIFIC CHANGE HERE]

* [LARGER ISSUES MAY DESERVE THEIR OWN SECTION]

 URLs

 Download location of updated images:

<http://cdimage.debian.org/cdimage/release/current-live/>

 Debian Live Projekt Homepage:

<http://live.debian.net/>

 The current stable distribution:

<http://ftp.debian.org/debian/dists/stable>

 stable distribution information (release notes, errata etc.):

<http://www.debian.org/releases/stable/>

 Security announcements and information:

<http://www.debian.org/security/>

 About Debian

 The Debian Project is an association of Free Software developers who

 volunteer their time and effort in order to produce the completely free

 operating system Debian GNU/Linux.

 About Debian Live

 Debian Live is an official sub-project of Debian which produces Debian

 systems that do not require a classical installer. Images are available

 for CD/DVD discs, USB sticks and PXE netbooting as well as a bare

 filesystem images for booting directly from the internet.

 Contact Information

 For further information, please visit the Debian Live web pages at

 <http://live.debian.net/> or alternatively send mail to

 <debian-live@lists.debian.org>.

 [image: <<previous]

 [image: ^up^]

 [image: next>>]

 examples -
 Debian Live Handbuch

 [image: <<previous]

 [image: ^up^]

 [image: next>>]

 Debian Live Handbuch

 Examples

 671

 16. Examples

 672

 This chapter covers example builds for specific use cases with Debian Live. If you are new to building your own Debian Live images, we recommend you first look at the three tutorials in sequence, as each one teaches new techniques that will help you use and understand the remaining examples.

 673
 [bookmark: 673]
 [bookmark: h16.1][bookmark: using-the-examples]16.1 Using the examples

 674

 To use these examples you need a system to build them on that meets the requirements listed in Requirements and has live-build installed as described in Installing live-build.

 675

 Note that, for the sake of brevity, in these examples we do not specify a local mirror to use for the build. You can speed up downloads considerably if you use a local mirror. You may specify the options when you use lb config, as described in Distribution mirrors used at build time, or for more convenience, set the default for your build system in /etc/live/build.conf. Simply create this file and in it, set the corresponding LB_MIRROR_* variables to your preferred mirror. For example:

 676

 LB_MIRROR_BOOTSTRAP="http://mirror/debian"

 LB_MIRROR_CHROOT="http://mirror/debian"

 LB_MIRROR_CHROOT_SECURITY="http://mirror/debian-security"

 677
 [bookmark: 677]
 [bookmark: h16.2][bookmark: tutorial-1]16.2 Tutorial 1: A standard image

 678

 Use case: Create a simple first image, learning the basics of live-build.

 679

 In this tutorial, we will build a default ISO hybrid Debian Live image containing only base packages (no Xorg) and some Debian Live support packages, as a first exercise in using live-build.

 680

 You can't get much simpler than this:

 681

 $ mkdir tutorial1 ; cd tutorial1 ; lb config

 682

 Examine the contents of the config/ directory if you wish. You will see stored here a skeletal configuration, ready to customize or, in this case, use immediately to build a default image.

 683

 Now, as superuser, build the image, saving a log as you build with tee.

 684

 # lb build 2>&1 | tee binary.log

 685

 Assuming all goes well, after a while, the current directory will contain binary-hybrid.iso. This ISO hybrid image can be booted directly in a virtual machine as described in Testing an ISO image with Qemu and Testing an ISO image with virtualbox-ose, or else imaged onto optical media or a USB flash device as described in Burning an ISO image to a physical medium and Copying USB/HDD image to a USB stick, respectively.

 686
 [bookmark: 686]
 [bookmark: h16.3][bookmark: tutorial-2]16.3 Tutorial 2: A web browser utility

 687

 Use case: Create a web browser utility image, learning how to apply customizations.

 688

 In this tutorial, we will create an image suitable for use as a web browser utility, serving as an introduction to customizing Debian Live images.

 689

 $ mkdir tutorial2 ; cd tutorial2 ; lb config -p lxde --packages iceweasel

 690

 Our choice of LXDE for this example reflects our desire to provide a minimal desktop environment, since the focus of the image is the single use we have in mind, the web browser. We could go even further and provide a default configuration for the web browser in config/chroot_local-includes/etc/iceweasel/profile/, or additional support packages for viewing various kinds of web content, but we leave this as an exercise for the reader.

 691

 Build the image, again as superuser, keeping a log as in Tutorial 1:

 692

 # lb build 2>&1 | tee binary.log

 693

 Again, verify the image is OK and test, as in Tutorial 1.

 694
 [bookmark: 694]
 [bookmark: h16.4][bookmark: tutorial-3]16.4 Tutorial 3: A personalized image

 695

 Use case: Create a project to build a personalized image, containing your favourite software to take with you on a USB stick wherever you go, and evolving in successive revisions as your needs and preferences change.

 696

 Since we will be changing our personalized image over a number of revisions, and we want to track those changes, trying things experimentally and possibly reverting them if things don't work out, we will keep our configuration in the popular git version control system. We will also use the best practice of autoconfiguration via auto scripts as described in Managing a configuration.

 697
 [bookmark: 697]
 [bookmark: 16.4.1][bookmark: h16.4.1]16.4.1 First revision

 698

 $ mkdir -p tutorial3/auto

 $ cp /usr/share/live/build/examples/auto/* tutorial3/auto/

 $ cd tutorial3

 699

 Edit auto/config to read as follows:

 700

 #!/bin/sh

 lb config noauto \

--architecture i386 \

--linux-flavours 686 \

--packages-lists lxde \

--packages "iceweasel xchat" \

"${@}"

 701

 First, --architecture i386 ensures that on our amd64 build system, we build a 32-bit version suitable for use on most machines. Second, we use --linux-flavours 686 because we don't anticipate using this image on much older systems. Third, we've chosen the lxde package list to give us a minimal desktop. And finally, we have added two initial favourite packages: iceweasel and xchat.

 702

 Now, build the image:

 703

 # lb build

 704

 Note that unlike in the first two tutorials, we no longer have to type 2>&1 | tee binary.log as that is now included in auto/build.

 705

 Once you've tested the image (as in Tutorial 1) and are satisfied it works, it's time to initialize our git repository, adding only the auto scripts we just created, and then make the first commit:

 706

 $ git init

 $ git add auto

 $ git commit -a -m "Initial import."

 707
 [bookmark: 707]
 [bookmark: 16.4.2][bookmark: h16.4.2]16.4.2 Second revision

 708

 In this revision, we're going to clean up from the first build, add the vlc package to our configuration, rebuild, test and commit.

 709

 The lb clean command will clean up all generated files from the previous build except for the cache, which saves having to re-download packages. This ensures that the subsequent lb build will re-run all stages to regenerate the files from our new configuration.

 710

 # lb clean

 711

 Now edit auto/config to add the vlc package:

 712

 #!/bin/sh

 lb config noauto \

--architecture i386 \

--linux-flavours 686 \

--packages-lists lxde \

--packages "iceweasel xchat vlc" \

"${@}"

 713

 Build again:

 714

 # lb build

 715

 Test, and when you're satisfied, commit the next revision:

 716

 $ git commit -a -m "Adding vlc media player."

 717

 Of course, more complicated changes to the configuration are possible, perhaps adding files in subdirectories of config/. When you commit new revisions, just take care not to hand edit or commit the top-level files in config containing LB_* variables, as these are build products, too, and are always cleaned up by lb clean and re-created with lb config via their respective auto scripts.

 718

 We've come to the end of our tutorial series. While many more kinds of customization are possible, even just using the few features explored in these simple examples, an almost infinite variety of different images can be created. The remaining examples in this section cover several other use cases drawn from the collected experiences of users of Debian Live.

 719
 [bookmark: 719]
 [bookmark: 16.5][bookmark: h16.5]16.5 A VNC Kiosk Client

 720

 Use case: Create an image with live-build to boot directly to a VNC server.

 721

 Make a build directory and create a skeletal configuration in it built around the standard-x11 list, including gdm3, metacity and xtightvncviewer, disabling recommends to make a minimal system:

 722

 $ mkdir vnc_kiosk_client

 $ cd vnc_kiosk_client

 $ lb config -a i386 -k 686 -p standard-x11 \

--packages "gdm3 metacity xvnc4viewer" \

--apt-recommends false

 723

 Create the directory /etc/skel and put a custom .xsession in it for the default user that will launch metacity and start xvncviewer, connecting to port 5901 on a server at 192.168.1.2:

 724

 $ mkdir -p config/chroot_local-includes/etc/skel

 $ cat >config/chroot_local-includes/etc/skel/.xsession <<END

 #!/bin/sh

 /usr/bin/metacity &

 /usr/bin/xvncviewer 192.168.1.2:1

 exit

 END

 725

 Build the image:

 726

 # lb build

 727

 Enjoy.

 728
 [bookmark: 728]
 [bookmark: 16.6][bookmark: h16.6]16.6 A base image for a 128M USB key

 729

 Use case: Create a standard image with some components removed in order to fit on a 128M USB key with space left over to use as you see fit.

 730

 When optimizing an image to fit a certain media size, you need to understand the tradeoffs you are making between size and functionality. In this example, we trim only so much as to make room for additional material within a 128M media size, but without doing anything to destroy integrity of the packages contained within, such as the purging of locale data via the localepurge package, or other such "intrusive" optimizations. Of particular note, you should not use --bootstrap-flavour minimal unless you really know what you're doing, as omitting priority important packages will most likely produce a broken live system.

 731

 $ lb config -k 486 -p minimal --binary-indices false \

--memtest none --apt-recommends false --includes none

 732

 Now, build the image in the usual way:

 733

 # lb build 2>&1 | tee binary.log

 734

 On the author's system at time of writing, the above configuration produced a 78Mbyte image. This compares favourably with the 166Mbyte image produced by the default configuration in Tutorial 1.

 735

 The biggest space-saver here, compared to building a standard image on an i386 architecture system, is to select only the 486 kernel flavour instead of the default -k "486 686". Leaving off APT's indices with --binary-indices false also saves a fair amount of space, the tradeoff being that you need to apt-get update before using apt in the live system. Choosing the minimal package list leaves out the large locales package and associated utilities. Dropping recommended packages with --apt-recommends false saves some additional space, at the expense of omitting some packages you might otherwise expect to be there, such as firmware-linux-free which may be needed to support certain hardware. The remaining options shave off additional small amounts of space. It's up to you to decide if the functionality that is sacrificed with each optimization is worth the loss in functionality.

 736
 [bookmark: 736]
 [bookmark: 16.7][bookmark: h16.7]16.7 A localized KDE desktop and installer

 737

 Use case: Create a KDE desktop image, localized for Brazilian Portuguese and including an installer.

 738

 We want to make an iso-hybrid image for i386 architecture using our preferred desktop, in this case KDE, containing all of the same packages that would be installed by the standard Debian installer for KDE.

 739

 Our initial problem is the discovery of the names of the appropriate tasks. Currently, live-build cannot help with this. While we might get lucky and find this by trial-and-error, there is a tool, grep-dctrl, which can be used to dig it out of the task descriptions in tasksel-data, so to prepare, make sure you have both of those things:

 740

 # apt-get install dctrl-tools tasksel-data

 741

 Now we can search for the appropriate tasks, first with:

 742

 $ grep-dctrl -FTest-lang pt_BR /usr/share/tas